

[image: logo fhir]
FHIR at Scale (FAST): Exchange with or without Intermediaries
Reliable Routing Over Intermediaries
0 - Table of Contents
1 - Home Page
1.1 - Overview

As the need for integration between different actors in healthcare has grown, the aspect of transactions routings across one or more intermediaries such as clearinghouses, HIEs, national networks, and other exchanges is recognized. An example of this scenario is the situation in which a payer uses a clearinghouse intermediary as their 'gateway' for transactions. There are both technical and business operational value adds in this intermediary model. This model was born in the world of the original X12 transaction set and is expected to continue in the evolving RESTful FHIR API integration model. Other networks including HIEs and national networks, have emerged as brokering intermediaries (document access/exchange, e-prescribing, etc.), that may also engage in FHIR based interoperability.

Solution Features:
• Common pattern, used for many years in healthcare and other industries
• Lightweight
• Works even when doing GET or POST (i.e., searches or matches), so even if there is no FHIR resource being exchanged then routing information is still available
• Universally usable, regardless of FHIR transaction – it’s resource agnostic
1.2 – Content and organization
2 – Background and use cases
2.1 – Underlying technologies
This solution uses custom HTTP headers as described in the FHIR Exchange Module (http://build.fhir.org/http.html#custom) with proposed new X-Originator and X-Destination headers.
2.2 – Use cases
In this model, the interaction originator will know the final destination but is agnostic to intermediaries involved in the message routing. For example, if provider A needs to request information from payer B and payer B uses a payer agnostic intermediary, provider A will initiate the interaction with a known endpoint representing payer B, which in this case is an intermediary, and the intermediary will handle routing of the transaction and provide any value-add services. The intermediary, or intermediaries, will need to have origination and routing information available during the life cycle of the transaction to ensure appropriate delivery.

A variation of the use case is one in which the requester, provider A, simply provides the request to their intermediary who then provides routing information so that the transaction can move across additional intermediaries before getting to payer B.

Of course, there are cases in which there are no intermediaries involved and the routing information is not explicitly needed, but there is no harm with it being available.

Our goal is to provide a model that supports a hybrid model of point-to-point interaction as well as intermediary brokered interaction without the actors in either side needing detailed knowledge of how intermediary routing works.
A reliable routing solution needs to support:
• Consistent definition and representation of routing information
• Synchronous and asynchronous models – support for push and pull models in synchronous and asynchronous patterns
• A hybrid environment - transactions over both dynamic point-to-point and intermediary brokered models
Actor to actor using one or more intermediaries.
Actor to actor without intermediary involvement.

3 – Specification
[image:]
X-Originator: payer_a
X-Destination: payer_b
C# example

using System;
using System.Text;
using Microsoft.Web.Administration;

internal static class Sample
{
 private static void Main()
 {
 using (ServerManager serverManager = new ServerManager())
 {
 Configuration config = serverManager.GetWebConfiguration("Default Web Site");
 ConfigurationSection httpProtocolSection = config.GetSection("system.webServer/httpProtocol");
 ConfigurationElementCollection customHeadersCollection = httpProtocolSection.GetCollection("customHeaders");

 ConfigurationElement addElement = customHeadersCollection.CreateElement("add");
 addElement["name"] = @"X-Originator";
 addElement["value"] = @"payer_a";
 customHeadersCollection.Add(addElement);

 serverManager.CommitChanges();
 }
 }
}
Note – the prefix of ‘X’ was deprecated with RFC 6648.

image1.png

image2.png

