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Abstract	
Cross-institutional	healthcare	predictive	modeling	can	accelerate	research	and	facilitate	quality	improvement	
initiatives,	and	thus	is	important	for	national	healthcare	delivery	priorities.	For	example,	a	model	that	predicts	
risk	 of	 re-admission	 for	 a	 particular	 set	 of	 patients	will	 be	more	 generalizable	 if	 developed	with	 data	 from	
multiple	institutions.	While	privacy-protecting	methods	to	build	predictive	models	exist,	most	are	based	on	a	
centralized	architecture,	which	presents	security	and	robustness	vulnerabilities	such	as	single-point-of-failure	
(and	single-point-of-breach)	and	accidental	or	malicious	modification	of	records.	In	this	article,	we	describe	a	
new	framework,	ModelChain,	 to	adapt	Blockchain	 technology	 for	privacy-preserving	machine	 learning.	Each	
participating	site	contributes	to	model	parameter	estimation	without	revealing	any	patient	health	information	
(i.e.,	 only	model	 data,	 no	 observation-level	 data,	 are	 exchanged	 across	 institutions).	We	 integrate	 privacy-
preserving	 online	 machine	 learning	 with	 a	 private	 Blockchain	 network,	 apply	 transaction	 metadata	 to	
disseminate	partial	models,	and	design	a	new	proof-of-information	algorithm	to	determine	the	order	of	 the	
online	learning	process.	We	also	discuss	the	benefits	and	potential	issues	of	applying	Blockchain	technology	to	
solve	 the	 privacy-preserving	 healthcare	 predictive	 modeling	 task	 and	 to	 increase	 interoperability	 between	
institutions,	 to	 support	 the	Nationwide	 Interoperability	Roadmap	and	national	healthcare	delivery	priorities	
such	as	Patient-Centered	Outcomes	Research	(PCOR).	
	
Introduction	
Cross-institution	 interoperable	 healthcare	 predictive	 modeling	 can	 advance	 research	 and	 facilitate	 quality	
improvement	 initiatives,	 for	 example,	 by	 generating	 scientific	 evidence	 for	 comparative	 effectiveness	
research,1	 accelerating	 biomedical	 discoveries,2	 and	 improving	 patient-care.3	 For	 example,	 a	 healthcare	
provider	 may	 be	 able	 to	 predict	 certain	 outcome	 even	 if	 her	 institution	 has	 few	 or	 none	 related	 patient	
records.	A	predictive	model	can	be	“learned”	(i.e.,	its	parameters	can	be	estimated)	from	data	originating	from	
the	other	institutions.	However,	improper	data	disclosure	could	place	sensitive	personal	health	information	at	
risk.	To	protect	the	privacy	of	individuals,	several	algorithms	(such	as	GLORE,4	EXPLORER,5	and	VERTIGO6)	have	
been	 proposed	 to	 conduct	 predictive	 modeling	 by	 transfer	 of	 partially-trained	 machine	 learning	 models	
instead	 of	 disseminating	 individual	 patient-level	 data.	 However,	 these	 state-of-the-art	 distributed	 privacy-
preserving	predictive	modeling	frameworks	are	centralized	(i.e.,	require	a	central	server	to	 intermediate	the	
modeling	process	and	aggregate	the	global	model),4–6	as	shown	in	Figure	1(a).	Such	a	client-server	architecture	
carries	the	following	risks:	
	

● Institutional	policies.	For	example,	a	site	may	not	want	to	cede	control	to	a	single	central	server.7	
	

● Single-point-of-failure.8,9	 For	example,	 if	 the	 central	 server	 is	 shut	down	 for	maintenance,	 the	whole	
network	 stops	 working.	 Furthermore,	 if	 the	 admin	 user	 account	 of	 the	 central	 server	 gets	
compromised,	the	entire	network	is	also	under	the	risk	of	being	compromised.7		
	

● Participating	sites	cannot	join/leave	the	network	at	any	time.10	If	any	site	joins	or	leaves	the	network	
for	 a	 short	 period	 of	 time,	 the	 analysis	 process	 is	 disrupted	 and	 the	 server	 needs	 to	 deal	 with	 the	
recovering	 issue.	 A	 new	 site	 may	 not	 participate	 in	 the	 network	 without	 the	 authentication	 and	
reconfiguration	on	the	central	server.8,9	

	



	
	

	
	

Figure	1.	(a):	Centralized	topology.	(b):	Decentralized	topology	(Blockchain).	
	

● The	 data	 being	 disseminated	 and	 the	 transfer	 records	 are	 mutable.	 An	 attacker	 could	 change	 the	
partial	models	without	being	noticed.7	The	transfer	records	may	also	be	modified	so	that	no	audit	trail	
is	available	to	identify	such	malicious	change	of	data.11,12	

	
● The	 client-server	architecture	may	present	 consensus/synchronization	 issues	on	distributed	networks.	

Specifically,	the	issue	is	the	combination	of	two	problems:	the	Byzantine	Generals	Problem,13	in	which	
the	participating	sites	need	to	agree	upon	the	aggregated	model	under	 the	constraint	 that	each	site	
may	 fail	 due	 to	 accidental	 or	 even	 malicious	 ways,7	 and	 the	 Sybil	 Attack	 Problem,14	 of	 which	 the	
attacker	 comprises	 a	 large	 fraction	 of	 the	 seemingly	 independent	 participants	 and	 exerts	 unfairly	
disproportionate	influence	during	the	process	of	predictive	modeling.7,15	

	
To	 address	 the	 abovementioned	 risks,	 one	 plausible	 solution	 is	 to	 adapt	 the	Blockchain	 technology	 (in	 this	
article,	 we	 use	 “Blockchain”	 to	 denote	 the	 technology,	 and	 “blockchain”	 to	 indicate	 the	 actual	 chain	 of	
blocks).7,9–12,15–20	 A	 Blockchain-based	 distributed	 network	 has	 the	 following	 desirable	 features	 that	make	 it	
suitable	to	mitigate	the	risks	of	centralized	privacy-preserving	healthcare	predictive	modeling	networks.	First,	
Blockchain	is	by	design	a	decentralized	(i.e.,	a	peer-to-peer,	non-intermediated)	architecture	(Figure	1(b));	the	
verification	 of	 transactions	 is	 achieved	 by	 majority	 proof-of-work	 voting.17	 Each	 institution	 can	 keep	 full	
control	of	their	own	computational	resources.	Also,	there	is	no	risk	of	single-point-of-failure.8,9	Second,	each	
site	(including	new	sites)	can	join/leave	the	network	freely	without	imposing	overhead	on	a	central	server	or	
disrupting	the	machine	learning	process.8–10	Finally,	the	proof-of-work	blockchain	provides	an	immutable	audit	
trail.7,11,12	That	is,	changing	the	data	or	records	is	very	difficult;	the	attacker	needs	to	redo	proof-of-work	of	the	
target	block	and	all	 blocks	after	 it,	 and	 then	 surpass	all	 honest	 sites.	As	 shown	by	Satoshi	Nakamoto,17	 the	
inventor	of	Blockchain	and	Bitcoin,	given	that	the	probability	that	an	honest	node	finds	the	next	block	is	larger	
than	the	probability	that	an	attacker	finds	the	next	block,	the	probability	the	attacker	will	ever	catch	up	drops	
exponentially	as	the	number	of	the	blocks	by	which	the	attacker	lags	behind	increases.	This	is	also	the	reason	
why	the	Blockchain	mechanism	also	solves	the	relaxed	version	of	Byzantine	Generals	Problem	and	the	Sybil	
Attack	Problem,9,15,18,20	as	formally	proved	by	Miller	et	al.18	
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Although	Blockchain	provides	the	abovementioned	security	and	robustness	benefits,	a	 reasonable	approach	
to	 integrate	 Blockchain	 with	 the	 privacy-preserving	 healthcare	 predictive	modeling	 algorithms	 is	 yet	 to	 be	
devised.	 In	 this	 article,	 we	 propose	ModelChain,	 a	 private-Blockchain-based	 privacy-preserving	 healthcare	
predictive	modeling	framework,	to	combine	these	two	important	technologies.	
	
First,	 we	 apply	 privacy-preserving	 online	 machine	 learning	 algorithms	 on	 blockchains.	 Intuitively,	 the	
incremental	 characteristic	 of	 online	 machine	 learning	 makes	 it	 feasible	 for	 peer-to-peer	 networks	 like	
Blockchain.	Then,	we	utilize	metadata	 in	the	transactions	to	disseminate	the	partial	models	and	other	meta	
information	(i.e.,	 flag	(which	 indicates	the	type	of	action)	of	the	model,	hash	of	the	model,	and	error	of	the	
model),	and	thus	integrate	private	blockchains	(i.e.,	the	network	is	available	only	for	participating	institutions)	
with	privacy-preserving	online	machine	 learning.	Finally,	we	design	a	new	proof-of-information	algorithm	on	
top	of	the	original	proof-of-work	consensus	protocol,	to	determine	the	order	of	the	online	machine	learning	
on	blockchains,	aiming	at	increasing	efficiency	and	accuracy.	The	basic	idea	of	proof-of-information	is	similar	
to	the	concept	of	Boosting:21–25	the	site	that	contains	data	that	cannot	be	predicted	accurately	using	a	current	
partial	model	contains	more	information	to	improve	the	model,	and	thus	that	site	should	be	assigned	a	higher	
priority	 to	 be	 chosen	 as	 the	 next	 model-updating	 site.	 We	 start	 with	 the	 best	 model	 to	 prevent	 error	
propagation,	choose	the	site	with	highest	error	for	current	model	to	update	the	model,	and	repeat	the	process	
to	update	the	model	until	a	site	cannot	find	any	other	site	with	higher	error	to	update	the	model.	In	this	case,	
we	consider	the	model	as	the	consensus	model.	
	
ModelChain	 can	 advance	 the	 following	 interoperability	 needs	 stated	 in	 the	 Nationwide	 Interoperability	
Roadmap26	of	the	Office	of	the	National	Coordinator	for	Health	Information	Technology	(ONC):		
	

● “Build	upon	the	existing	health	IT	 infrastructure.”	ModelChain	exploits	the	existing	healthcare	data	in	
Clinical	Data	Research	Networks	(CDRNs)	such	as	the	Patient-centered	SCAlable	National	Network	for	
Effectiveness	Research	(pSCANNER)27,	which	is	one	of	the	Clinical	Data	Research	Networks	(CDRNs)	in	
the	 PCORI-launched	 PCORnet89,90	 and	 includes	 three	 networks:	 VA	 Informatics	 and	 Computing	
Infrastructure	 (VINCI),28,29	 University	 of	 California	 Research	 eXchange	 (UCReX),30	 and	 SCANNER.31,32	
With	 the	 support	 of	 the	 Blockchain	 backbone,	 ModelChain	 can	 leverage	 all	 existing	 patient	 data	
storage	infrastructures,	while	improving	the	healthcare	prediction	power	for	every	site.	

		
● “Maintain	 modularity.”	 Comparing	 to	 traditional	 client-server	 architecture,	ModelChain	 inherits	 the	

peer-to-peer	 architecture	 of	 Blockchain,	 allowing	 each	 site	 to	 remain	modular	 while	 interoperating	
with	other	sites.	Also,	each	site	has	control	about	how	its	data	are	accessed	(instead	of	ceding	control	
to	the	central	server),	thus	can	keep	up	with	institutional	policies.	Moreover,	Blockchain	provides	the	
native	 ability	 to	 automatically	 coordinate	 the	 joining	 or	 leaving	 of	 each	 site,	 further	 improving	 the	
independence	and	modularity	for	the	participating	institutions.	

		
● “Protect	 privacy	and	 security	 in	 all	 aspects	 of	 interoperability.”	ModelChain	 is	 designed	 to	provide	a	

secure,	 robust	and	privacy-preserving	 interoperability	platform.	Specifically,	Blockchain	 increases	 the	
security	 by	 avoiding	 single-point-of-failure,	 proving	 immutable	 audit	 trails,	 and	 mitigating	 the	
Byzantine	 Generals	 and	 the	 Sybil	 Attack	 problems,	while	 preserving	 the	 privacy	 by	 exchanging	 zero	
patient	data	during	the	predictive	modeling	process.	

		
The	 expected	 benefits	 of	 ModelChain	 can	 also	 be	 linked	 to	 the	 stated	 objectives	 of	 Patient-Centered	
Outcomes	Research	(PCOR)33–35	defined	by	the	Patient-Centered	Outcomes	Research	Institute	(PCORI).36–38	
	
	



Related	Work	
Privacy-preserving	predictive	modeling	
Cross-institutional	healthcare	predictive	modeling	and	machine	learning	can	accelerate	research	and	facilitate	
quality	 improvement	 initiatives.	 However,	 improper	 information	 exchange	 of	 biomedical	 data	 can	 put	
sensitive	 personal	 health	 information	 at	 risk.	 To	 protect	 the	 privacy	 of	 individuals,	many	 algorithms4–6,39–46	
have	been	proposed	to	conduct	predictive	modeling	by	transfer	of	partially-trained	machine	learning	models,	
instead	 of	 disseminating	 individual	 patient	 data.	 For	 example,	 GLORE4	 built	 logistic	 regression	models	with	
horizontally	 partitioned	data,	 VERTIGO6	 dealt	with	 vertically	 partitioned	data,	 and	WebDISCO47	 constructed	
Cox	proportional	hazards	model	on	horizontally	partitioned	data.	
	
Among	 these	 distributed	 privacy-preserving	 machine	 learning	 algorithms,	 EXPLORER5	 and	 the	 Distributed	
Autonomous	Online	Learning45	are	“online”	machine	learning	algorithms	of	which	models	can	be	updated	in	a	
sequential	order	(as	opposed	to	the	other	“batch”	algorithms).	Such	an	online	machine	learning	algorithms	are	
similar	to	our	proposed	ModelChain	that	updates	models	on	Blockchain	sequentially.	
	
However,	all	these	machine	learning	algorithms,	which	either	update	the	models	in	a	batch	or	online	fashion,	
relied	on	a	centralized	network	architecture	that	may	suffer	from	security	risks	such	as	a	single-point-of-failure.	
In	contrast,	ModelChain	 is	built	on	 top	of	Blockchain,	which	 is	a	decentralized	architecture	and	can	provide	
further	security/robustness	improvement	(e.g.,	immutable	audit	trails).	
	
Another	 related	 area	 covers	 distributed	 data-parallelism	machine	 learning	 algorithms,48	 such	 as	 Parameter	
Server49–52	or	compute	models	using	the	MapReduce53–56	technology.	Nevertheless,	they	mainly	focus	on	the	
parallelization	algorithms	to	speed-up	the	computation	process,	 instead	of	aiming	at	privacy-preserving	data	
analysis,4	and	thus	are	different	from	our	method.	
	
Blockchain	technology	for	crypto-currency	applications	
Blockchain	 was	 first	 proposed	 as	 a	 proof-of-work	 consensus	 protocol	 implementation	 of	 peer-to-peer	
timestamp	server	on	a	decentralized	basis	in	the	famous	Bitcoin	crypto-currency.17	Specifically,	an	electronic	
coin	(e.g.,	Bitcoin)	is	defined	as	a	chain	of	transactions.	A	block	contains	multiple	transactions	to	be	verified,	
and	the	blocks	are	chained	(i.e.,	“blockchain”)	using	hash	functions	to	achieve	the	timestamp	feature.	
	
Then,	each	site	“mines”	blocks	(to	confirm	the	transactions)	by	solving	a	difficult	hashing	problem	(i.e.,	“proof-
of-work”).	That	 is,	each	block	contains	an	additional	counter	(i.e.,	“nonce”)	as	one	of	the	 inputs	of	the	hash	
function,	and	the	nonce	is	 incremented	until	the	hashed	value	contains	specified	 leading	zero	bits	(then	the	
work	 is	 “proofed”).17	 The	 first	 site	 that	 successfully	 satisfies	 the	 proof-of-work	 (and	 thus	 has	 the	 “decision	
power”57)	verifies	the	transactions	and	adds	the	confirmed	block	at	the	end	of	the	blockchain,	and	the	block	is	
confirmed	 and	 is	 considered	 “immutable”;17	 if	 any	 attacker	wants	 to	 change	 a	 block,	 all	 the	 blocks	 after	 it	
would	also	require	to	be	recomputed	(because	each	block	is	computed	using	the	hash	of	the	previous	block	in	
the	chain).	Given	the	assumption	that	honest	computational	sites	(i.e.,	computational	power)	are	larger	than	
malicious	 sites,	 the	 probability	 that	 the	 attacker	 can	 recompute	 and	 modify	 a	 block	 is	 extremely	 small	
(especially	when	the	attacker	has	already	lagged	behind	for	many	blocks).17	
	
Such	 a	 proof-of-work	 design	 can	 also	 be	 regarded	 as	majority	 voting	 (i.e.,	 one-CPU-one-vote);	 the	 longest	
chain	(invested	with	the	heaviest	proof-of-work	effort)	represents	the	majority	decision,	and	thus	no	trusted	
central	authority	(i.e.,	“mint”)	 is	required	to	prevent	the	double-spending	problem	(i.e.,	the	transactions	are	
validated	by	the	longest	chain	-	the	majority	of	the	sites).	Several	recent	researches	provide	detailed	analyses	
of	the	Blockchain	consensus	protocol	in	terms	of	its	ability	to	resist	attacks.17,20,58–61	
	



After	Bitcoin,	 several	alternatives	have	also	been	proposed	 (alternative	blockchains,	or	 “altchains”),	 such	as	
Colored	 coins63	 (a	 protocol	 to	 support	Bitcoin	 in	 different	 “colors”	 as	 different	 crypto-currencies)	 and	 Side-
chains64,65	(a	protocol	to	allow	Bitcoin	to	be	transferred	between	multiple	blockchain	networks).	
	
Also,	 several	 protocol	 have	 been	 proposed	 on	 top	 of	 Bitcoin’s	 proof-of-work	 to	 increase	 the	 difficulty	 of	
developing	a	“Bitcoin	monopoly”,	such	as	proof-of-stake57,66,67	(in	which	the	“decision	power”	is	based	on	the	
ages	 of	 the	 owned	 bitcoins;	 the	 site	 with	 the	 largest	 “stake”	 can	 confirm	 and	 add	 the	 new	 block	 to	 the	
blockchain)	 and	proof-of-burn65,68	 (in	which	 the	 “decision	power”	 is	 based	on	 the	destroying	of	 the	owned	
bitcoins;	the	site	that	is	willing	to	destroy	the	largest	number	of	its	bitcoins	can	confirm	and	add	the	new	block	
to	the	blockchain).	In	this	article,	we	propose	a	proof-of-information	algorithm	on	top	of	the	proof-of-work,	to	
provide	 “decision	power”	 (i.e.,	 privilege	 to	 update	 the	online	machine	 learning	model)	 to	 the	 site	with	 the	
highest	expected	amount	of	information.	
	
Blockchain	technology	for	non-financial	and	healthcare	applications	
Blockchain	was	created	for	financial	transactions,	but	it	is	also	a	new	form	of	a	distributed	database,	because	
it	can	store	arbitrary	data	in	the	transaction	metadata	(the	metadata	has	been	an	official	Bitcoin	entity	since	
2014).7,10,69,70	 The	 original	 Bitcoin	 only	 supports	 80	 bytes	 of	 metadata	 (via	 OP_RETURN),	 but	 several	
implementations	of	Blockchain	support	a	larger	metadata	size.	For	example,	MultiChain10	supports	adjustable	
maximum	metadata	size	per	transaction.	Another	example	is	BigchainDB,7	which	is	built	on	top	of	a	big	data	
database	 RethinkDB71	 and	 thus	 has	 no	 hard	 limit	 on	 the	 transaction	 size.	 Here,	 we	 utilize	 the	 transaction	
metadata	to	disseminate	the	partially	trained	online	machine	learning	model	(and	the	meta	information	of	the	
model)	among	participating	sites.	Such	Blockchain-based	distributed	database	is	also	known	as	Blockchain	2.0,	
including	 technologies	 such	 as	 smart	 properties	 (the	 properties	 with	 blockchain-controlled	 ownership)	 and	
smart	 contracts	 (computer	 programs	 that	 manage	 smart	 properties).63,64,72–80	 One	 of	 the	 most	 famous	
Blockchain	2.0	 system	 is	 Ethereum,73,78	 a	decentralized	platform	 that	 runs	 smart	 contracts.	 Ethereum	has	a	
built-in	Turing-complete	programming	language	that	supports	loop	computation,	which	is	not	provided	by	the	
Bitcoin	scripting	language.73,78	In	the	context	of	a	distributed	database,	smart	properties	are	data	entries,	and	
smart	 contract	 are	 stored	 procedures.	 Our	 proof-of-information	 algorithm	 may	 be	 implemented	 using	
Blockchain	2.0	technologies	as	well,	with	smart	properties	being	partial	models,	and	smart	contracts	being	the	
algorithms	to	update	and	transfer	the	partial	models.	
	
Recently,	the	concept	of	Blockchain	3.0	has	been	proposed	to	indicate	applications	beyond	currency,	economy,	
and	 markets.75	 One	 of	 the	 most	 important	 application	 is	 the	 adaption	 of	 Blockchain	 technology	 to	 the	
healthcare	 system.	 For	 example,	 Irving	 et	 al.	 evaluated	 the	 idea	 of	 using	 the	 blockchain	 as	 a	 distributed	
tamper-proof	public	ledger,	to	provide	proof	of	pre-specified	endpoints	in	clinical	trial;81	McKernan	proposed	
to	apply	decentralized	blockchain	to	store	genomic	data;82	and	Jenkins	et	al.	discussed	a	bio-mining	framework	
for	 biomarkers	with	 a	multi-resolution	 blockchain	 to	 perform	multi-factor	 authentication	 and	 thus	 increase	
data	security.83	There	are	also	studies	that	propose	to	use	Blockchain	to	store	electronic	health	records,84,85	or	
to	 record	 health	 transactions.86	 However,	 to	 the	 best	 of	 our	 knowledge,	 we	 are	 the	 first	 to	 propose	 the	
adoption	 of	 Blockchain	 to	 improve	 the	 security	 and	 robustness	 of	 privacy-preserving	 healthcare	 predictive	
modeling.	
	
The	ModelChain	Framework	
In	ModelChain,	we	apply	privacy-preserving	online	machine	learning	algorithms	on	blockchains.	Intuitively,	the	
incremental	characteristics	of	online	machine	learning	is	feasible	for	peer-to-peer	networks	like	Blockchain.	It	
should	 be	 noted	 that	 any	 online	 learning	 algorithm,	 such	 as	 EXPLORER5	 or	Distributed	Autonomous	Online	
Learning,45	can	be	adapted	in	our	framework.	



	
	

Figure	2.	An	example	of	ModelChain.	Each	block	represents	a	timestamp,	containing	only	one	transaction.	
Each	transaction	contains	a	model,	flag	(action	type)	of	the	model,	hash	of	the	model,	and	error	of	the	model.	
	
Next,	we	utilize	the	metadata	in	the	transactions	to	disseminate	the	partial	models	and	the	meta	information	
(i.e.,	 flag	 of	 the	model,	 hash	 of	 the	model,	 and	 error	 of	 the	model)	 to	 integrate	 privacy-preserving	 online	
machine	 learning	with	a	private	Blockchain	network	 (Figure	2).	 There	are	 four	 types	of	 flag	 in	ModelChain:	
INITIALIZE,	UPDATE,	EVALUATE,	and	TRANSFER,	which	 indicates	the	action	a	site	has	taken	to	a	model	 (e.g.,	
INITIALIZE	=	the	site	initialized	the	model).	We	include	the	hash	of	the	model	to	save	storage	spaces	(i.e.,	only	
UPDATE	transactions	include	both	model	and	hash	of	model;	all	other	type	of	transactions	only	include	hash	of	
the	model	 (and	model	 =	NULL)	 to	 reduce	 the	 size	of	 blockchain).	 In	 a	 transaction,	 both	 the	 amount	of	 the	
transactions	 and	 the	 transaction	 fees	 are	 set	 to	 be	 zero.	 Also,	 in	 this	 private	Blockchain	 network,	 no	 block	
mining	reward	is	provided.	The	incentive	for	each	site	to	mine	blocks	and	verify	transactions	is	the	improved	
accuracy	of	the	predictive	model	using	cross-institution	data	in	a	privacy-preserving	manner.	Besides,	a	block	
can	 only	 contain	 one	 transaction	 (so	 each	 transaction	 has	 a	 unique	 timestamp).	 The	 private	 blockchain	
containing	all	blocks	of	transactions	can	be	regarded	as	a	distributed	database	(or	data	ledger)	that	every	site	
can	read	and	write	to.	We	then	use	this	Blockchain-based	private	distributed	database	as	a	basis	of	the	proof-
of-information	 algorithm.	 Finally,	we	 designed	 a	 new	 proof-of-information	 algorithm	on	 top	 of	 the	 original	
proof-of-work	 consensus	 protocol,	 to	 determine	 the	 order	 of	 the	 online	machine	 learning	 on	 blockchains,	
aiming	at	increasing	efficiency	and	accuracy.	The	basic	idea	is	similar	to	the	concept	of	Boosting:21–25	the	site	
which	contains	data	that	cannot	be	predicted	accurately	using	current	partial	model	probably	contains	more	
information	to	improve	the	model	than	other	sites,	and	thus	that	site	should	be	assigned	a	higher	priority	to	
be	chosen	as	the	next	model-updating	site.	
	
A	 running	 example	 of	 the	 proof-of-information	 algorithm	 is	 shown	 in	 Figure	 3.	 Suppose	 there	 are	 four	
participating	sites	that	would	like	to	train	a	privacy-preserving	online	machine	model	on	the	private	Blockchain	
network.	Assume	Mts	=	model	at	time	t	on	site	s,	Ets	=	error	at	time	t	on	site	s.	In	the	initialization	stage	(t	=	0),	
each	site	trains	their	own	model	using	their	local	patient	data,	and	the	model	with	lowest	error	(Site	1	with	E01	
=	0.2	in	our	example)	is	selected	as	the	initial	model.	The	reason	to	choose	the	best	model	is	to	prevent	the	
propagation	 of	 error.	 Conceptually,	 we	 regard	M01	 is	 “transferred”	 from	 Site	 1	 to	 Site	 1	 itself.	 Then,	 the	
selected	model	(M01)	is	submitted	to	Site	2,	3	and	4.	
	
Next	(t	=	1),	each	site	evaluates	the	model	M11	(which	is	the	same	as	M01)	using	their	local	data.	Suppose	Site	
2	has	the	highest	error	(E12	=	0.7).	Given	that	the	data	in	Site	2	is	the	most	unpredictable	for	model	M11,	we	
assume	that	Site	2	contains	the	richest	information	to	improve	M11.	Therefore,	Site	2	wins	the	“information	
bid”,	and	the	model	M11	is	now	transferred	to	Site	2	within	the	block	B1	(with	amount	=	0	and	transaction	fee	
=	0)	 shown	 in	Figure	2.	 It	 should	be	noted	 that	 the	Blockchain	protocol	 requires	every	 site	 to	 submit	every	
transaction	 to	 each	 other	 for	 verification.	 Therefore,	M11	 is	 actually	 submitted	 from	 Site	 1	 to	 every	 site.	
However,	since	Site	2	wins	the	“information	bid”,	we	conceptually	regard	that	M11	is	“transferred”	from	Site	1	
to	Site	2,	in	the	sense	that	only	Site	2	can	update	M11	using	the	local	patient	data	in	Site	2.	
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Figure	3.	An	example	of	the	proof-of-information	algorithm.	Mts	=	model	at	time	t	on	site	s,	Ets	=	error	at	time	
t	on	site	s.	The	model/error	with	green	underline	is	the	selected	one	at	that	timestamp	(at	each	t,	only	one	

model/error	is	selected).	
	
	

	
	

Figure	4.	An	example	of	the	proof-of-information	algorithm	for	new	data.	Suppose	the	current	(t	=	4)	
consensus	model	is	M44,	and	the	new	data	is	in	Site	1.	Mts	=	model	at	time	t	on	site	s,	Ets	=	error	at	time	t	on	

site	s.	The	model/error	with	green	underline	is	the	selected	one	at	that	timestamp.	
	
Then	(t	=	2),	Site	2	updates	the	online	machine	learning	model	as	M22	(within	the	block	B2	shown	in	Figure	2).	
Again,	 Site	 2	 send	M22	 to	 all	 other	 sites,	 and	 the	 site	with	 highest	 error	 (or	 richest	 information)	wins	 the	
“information	bid”	to	update	the	model	locally	(Site	3	in	our	example).	This	process	repeats	until	a	site	updates	
the	model	and	finds	that	itself	has	the	highest	error	than	all	other	sites.	For	example,	when	t	=	3,	Site	4	has	the	
highest	error	(0.3)	and	thus	wins	the	bid	to	update	the	model;	but	when	t	=	4,	Site	4	still	has	the	highest	error	
(0.2)	using	 the	updated	model.	 Therefore,	 the	process	does	not	need	 to	 continue;	we	 regard	 the	model	 as	
consensus	and	the	online	machine	learning	process	stops,	with	M44	as	the	consensus	model.	
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Algorithm	1.	Proof-of-Information-Iteration.	This	is	the	core	algorithm	to	determine	the	order	of	decentralized	

privacy-preserving	online	machine	learning.	

	
	
In	the	case	any	site	adds	new	data,	we	do	not	need	to	re-train	the	whole	model.	Instead,	we	use	the	proof-of-
information	again	 to	determine	whether	we	 should	update	 the	model	using	 the	new	data.	As	 illustrated	 in	
Figure	4,	suppose	the	current	(t	=	4)	consensus	model	is	M44,	and	the	new	data	is	in	Site	1.	In	time	t	=	5,	Site	1	
use	the	updated	data	(including	both	old	and	new	data)	to	evaluate	model	M54	 (which	 is	the	same	as	M44)	
and	realized	that	the	error	E51	=	0.4	is	larger	than	current	updating	site	(i.e.,	Site	4	with	E54	=	0.2).	Therefore,	
Site	1	wins	the	“information	bid”	again,	and	the	model	M54	is	now	transferred	to	Site	1	to	be	updated.	Then,	
the	same	process	shown	in	Figure	3	repeated	until	identifying	the	consensus	model.	Note	that	if	the	error	E51	
was	lower	than	E54,	we	consider	that	the	new	data	does	not	bring	enough	information	to	the	model	M54,	thus	
no	transfer	and	update	are	required.	The	similar	mechanism	can	be	used	for	a	new	site	(that	is,	new	site	can	
be	treated	as	a	site	where	all	data	are	new).	
	
Another	situation	to	be	considered	is	the	case	in	which	a	site	leaves	the	private	Blockchain	network.	Based	on	
the	Blockchain	mechanism,	we	do	not	need	to	deal	with	the	site-leaving	situation.	If	the	site	leaves	while	not	
updating	the	model	(e.g.,	Site	2	at	time	t	=	5	in	Figure	4),	then	we	can	simply	ignore	the	departure;	the	site	can	
join	at	any	 time	under	 the	Blockchain	mechanism.	On	 the	other	hand,	 if	 the	 site	 leaves	while	updating	 the	
model	(e.g.,	Site	1	at	time	t	=	5	in	Figure	4),	we	can	still	ignore	it.	This	is	because	such	a	model	transferring	is	
only	conceptual;	 the	model	 in	 the	blockchain	 is	not	updated	(i.e.,	 the	 latest	model	M54	 is	at	 the	end	of	 the	
blockchain),	 until	 Site	 1	 completes	 the	model	 update.	 Therefore,	 each	 site	 in	 the	 network	 can	 still	 use	 the	
latest	model	locally,	and	once	Site	1	comes	back	to	the	network,	it	is	treated	as	a	new	site	so	it	can	continue	
the	model	update	process.	
	
The	detailed	proof-of-information	algorithms	are	shown	in	Algorithm	1,	2	and	3.	Algorithm	1	is	the	core	of	the	
proof-of-information	algorithm,	which	determines	the	order	of	learning	and	repeats	the	learning	process	until	
the	consensus	model	 is	 found.	For	a	new	Blockchain	network,	each	site	executes	Algorithm	2,	which	 in	turn	
executes	Algorithm	1.	For	a	new	participant	to	an	existing	network,	or	an	existing	participant	with	new	data,	
the	site	executes	Algorithm	3,	which	also	leverages	Algorithm	1	to	learn	the	consensus	model.	
	

Input:	this	site	S,	polling	time	period	Δ,	waiting	time	period	Θ
Output:	the	latest	online	machine	learning	model	M

1 For	every	time	period	Δ check	the	block	chain
2 If	(there	are	new	models	(flag	=	UPDATE)	in	the	block	chain)
3 Retrieve	the	latest	model	MC (generated	by	site	C)	and	current	largest	error	EC from	the	block	chain
4 Set	M =	MC
5 Evaluate	MC on	the	data	in	S and	compute	the	error	E
6 Create	a	transaction	from	S to	S itself	with	flag	=	EVALUATE,	model	=	NULL,	hash	=	HASH	(MC),	and	error	=	E
7 If	(the	model	MC (flag	=	TRANSFER)	is	transferred	from	C to	S)
8 Update	MC using	the	data	in	S	to	generate	the	new	model	MS and	new	error	ES
9 Set	M =	MS
10 Create	a	transaction	from	S to	S itself	with	flag	=	UPDATE,	model	=	MS,	hash	=	HASH	(MS),	and	error	=	ES
11 Wait	for	specific	time	period	Θ and	collect	all	errors	(with	flag	=	EVALUATE)	from	other	sites
12 If	(ES is	not	larger	than	all	errors)
13 Identify	the	site	L with	the	largest	error	EL
14 Create	a	transaction	from	S to	L with	flag	=	TRANSFER,	model	=	NULL,	hash	=	HASH	(MS),	and	error	=	EL



	
Algorithm	2.	Proof-of-Information-Initialization.	This	is	the	main	algorithm	for	a	new	network	(i.e.,	all	

participating	sites	are	new).	

	
	
	
Algorithm	3.	Proof-of-Information-New.	This	is	the	main	algorithm	for	new	participating	site,	or	the	existing	

site	with	newly	available	data.	

	
	
It	should	be	noted	that	Algorithm	1	is	actually	a	“daemon”	service	that	is	always	watching	the	blockchain	to	
check	if	any	newly	updated	model	is	available.	Therefore,	although	at	times	the	consensus	learning	process	in	
Algorithm	1	may	pause	due	to	the	confirmation	of	the	consensus	model,	Algorithm	1	keeps	running	and	never	
stops	(unless	the	site	running	it	leaves	the	network,	or	the	site	has	new	data	and	would	like	to	stop	it	to	run	
Algorithm	 3	 instead).	 This	mechanism	 of	watching	 and	 responding	 events	 also	 suggests	 that	 our	 proposed	
proof-of-information	 algorithm	 may	 be	 implemented	 using	 Blockchain	 2.0	 technologies	 such	 as	 smart	
properties	and	smart	contracts,63,64,72–80	and	be	automatically	executed	at	every	site	 in	 the	private	network.	
That	is,	we	can	regard	the	partial	models	as	smart	properties,	and	realize	the	proof-of-information	algorithm	
using	smart	contracts	on	each	site	to	turn	them	to	autonomous	machines.	
	
Discussion	
Under	 the	 context	 of	 distributed	 privacy-preserving	 healthcare	 predictive	modeling,	 Blockchain	 technology	
enables	 the	 following	 benefits:	 decentralization,	 freely	 joining/leaving,	 immutable	 records,	 and	 security	
improvements	 to	 deal	 with	 the	 Byzantine	 Generals	 and	 Sybil	 Attack	 Problems.	 However,	 there	 are	 also	
intrinsic	 limitations	 to	 Blockchain.	 First,	 confidentiality	 is	 not	 fully	 preserved:	 any	 site	 can	 trace	 all	 of	 the	
transactions	 and	 hence	 the	 error	 at	 each	 site	 (although	 the	 transactions	 are	 anonymous).	 Second,	 the	
transaction	time	can	be	long	because	of	the	proof-of-work	computation	(e.g.,	the	average	transaction	time	for	
Bitcoin	is	10	minutes).	Finally,	it	is	vulnerable	to	the	“51%	attack”,10,19,73	which	happens	when	there	are	more	
malicious	sites	than	honest	sites	in	the	network.	
	
	

Input:	this	site	S,	polling	time	period	Δ,	waiting	time	period	Θ,	total	number	of	participating	sites	N
Output:	the	latest	online	machine	learning	model	M

1 Learn	model	MSon	the	data	in	S and	compute	the	error	E
2 Set	M =	MS
3 Create	a	transaction	from	S to	S itself	with	flag	=	INITIALIZE,	model	=	NULL,	hash	=	HASH	(MS),	and	error	=	ES
4 Wait	until	errors	(flag	=	INITIALIZE)	from	all	N sites	on	the	network	are	received
5 if	(E is	the	smallest	error	among	all	errors)
6 Create	a	transaction	from	S to	S with	flag	=	TRANSFER,	model	=	NULL,	hash	=	HASH	(MS),	and	error	=	ES
7 Set	M =	Proof-of-Information-Iteration	(Δ,	Θ)

Input:	this	site	S,	polling	time	period	Δ,	waiting	time	period	Θ
Output:	the	latest	online	machine	learning	model	M

1 Retrieve	the	latest	model	MC (generated	by	site	C)	and	current	largest	error	EC from	the	block	chain
2 Set	M =	MC
3 Evaluate	MC on	the	data	in	S and	compute	the	error	E
4 if	(E >	EC)
5 Create	a	transaction	from	C to	Swith	flag	=	TRANSFER,	model	=	NULL,	hash	=	HASH	(MC), and	error	=	E
6 Set	M =	Proof-of-Information-Iteration	(Δ,	Θ)



Nevertheless,	these	limitations	are	less	important	for	privacy-preserving	healthcare	predictive	modeling.	First,	
the	main	goal	is	to	learn	a	better	model	using	all	patients’	data	without	transferring	personal	protected	health	
information.	 Second,	 the	machine	 learning	 process	 itself	may	 take	 a	 long	 time,	 especially	 for	 participating	
institutions	with	large	patient	data.	In	comparison,	the	transaction	time	is	relatively	small	and	is	not	a	serious	
issue.	Finally,	the	participating	sites	are	healthcare	institutions	in	a	private	Blockchain	network,	so	the	risk	of	
the	“51%	attack”	is	minimal.	
	
One	potential	issue	for	the	proof-of-information	algorithm	is	that	it	might	run	too	many	iterations	(i.e.,	model	
transferring	transactions)	without	finding	the	“best”	consensus	predictive	model.	To	resolve	this	issue,	we	can	
stop	the	algorithm	if	the	error	reaches	a	certain	predefined	threshold	(the	model	is	good	enough),	add	a	time-
to-leave	counter	to	limit	the	maximum	number	of	iterations	(the	model	is	old	enough),	or	apply	both	criteria	
(the	model	is	either	good	enough	or	old	enough).	This	way	we	can	prevent	ModelChain	from	running	forever	
and	consuming	unnecessary	computational	power.	
	
We	also	address	implementation	aspects	of	ModelChain	as	follows.	First,	we	might	consider	setting	the	polling	
time	period	Δ	and	the	waiting	time	period	Θ	in	Algorithm	1,	2	and	3	based	on	the	timeliness	of	model	updating	
and	 the	 accuracy	 requirement	of	 the	models,	 the	 computational	 capability	 of	 the	 sites,	 and	 the	underlying	
network	 environment.	 For	 example,	 if	 the	 data	 in	 each	 site	 update	 quickly,	 we	might	 want	 to	 reduce	 the	
polling	time	period;	if	we	require	models	with	higher	predictive	power,	then	the	waiting	time	period	should	be	
longer	to	find	the	best	model.	However,	if	the	computational	power	or	the	network	speed	between	sites	are	
limited,	 it	might	not	be	feasible	with	low	polling	periods.	Similarly,	 if	we	need	more	timely-updated	models,	
shorter	waiting	 time	 period	would	 be	 preferable.	 Therefore,	 all	 the	 above	 factors	 should	 be	 considered	 to	
determine	 the	 best	 time	 period	 parameters.	 Second,	 the	 size	 of	 metadata	 should	 be	 considered,	 because	
every	site	stores	a	copy	of	the	whole	blockchain.	Take	EXPLORER5	for	example,	the	total	model	size	is	(m	*	(m	
+	1)),	where	m	 is	 the	size	of	 the	features.	Suppose	the	model	we	want	to	construct	has	1,000	features,	 the	
model	size	would	be	(1,000	*	(1,000	+	1))	*	64	bits	~=	8MB,	which	is	exactly	the	default	maximum	metadata	
size	 of	 the	MultiChain	 implementation.10	 Therefore,	we	 consider	 the	ModelChain	 framework	 reasonable	 in	
terms	of	metadata	 size.	 Finally,	 to	 further	 improve	 security,	we	 can	 encrypt	 the	 transaction	metadata	 that	
contains	the	model	information,	transmit	the	data	via	a	virtual	private	network	(VPN),	and	deploy	ModelChain	
on	private	Health	Insurance	Portability	and	Accountability	Act	(HIPAA)-certified	cloud	computing	environment	
such	as	integrating	Data	for	Analysis,	Anonymization,	and	Sharing	(iDASH).87,88	
	
Conclusion	
The	 capability	 to	 securely	 and	 robustly	 construct	 privacy-preserving	 predictive	model	 on	 healthcare	 data	 is	
essential	to	achieve	the	stated	objectives	in	support	of	the	Nationwide	Interoperability	Roadmap	and	national	
healthcare	 delivery	 priorities	 such	 as	 Patient-Centered	 Outcomes	 Research	 (PCOR).	 In	 this	 article,	 we	
proposed	 to	 improve	 the	 security	 and	 robustness	 of	 distributed	 privacy-preserving	 healthcare	 predictive	
modeling	using	Blockchain	technology.	We	designed	a	 framework,	ModelChain,	 to	 integrate	online	machine	
learning	with	blockchains,	and	utilized	 transaction	metadata	 for	model	dissemination.	We	also	developed	a	
new	proof-of-information	algorithm	to	determine	the	order	of	Blockchain-based	online	machine	learning.	Our	
next	 step	 is	 to	 evaluate	ModelChain	 trade-offs	 in	 real-world	 settings	 such	as	 the	Patient-centered	 SCAlable	
National	 Network	 for	 Effectiveness	 Research	 (pSCANNER).	 Also,	 we	 will	 continue	 to	 improve	 the	 proof-of-
information	algorithm	in	terms	of	efficiency	and	scalability.	We	anticipate	that	the	combination	of	technology	
and	policy	will	be	key	to	advance	health	services	research	and	healthcare	quality	improvement.		
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