HL7 CQLANG_R1 D2 _2017JAN

INTERNATIONAL

HL7 Standard: Clinical Quality Language
Specification, Release 1.2

January 2017

HL7 STU Specification

Sponsored by:

Clinical Decision Support and Clinical Quality Information Work
Groups

in collaboration with the Health and Human Services Standards
and Interoperability Framework Clinical Quality Framework
Initiative

Copyright © 2014-2017 Health Level Seven International ® ALL RIGHTS RESERVED. The reproduction of this
material in any form is strictly forbidden without the written permission of the publisher. HL7 and Health Level
Seven are registered trademarks of Health Level Seven International. Reg. U.S. Pat & TM Off.

Use of this material is governed by HL7's IP Compliance Policy.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page ii
© 2014-2017 Health Level Seven International. All rights reserved

http://www.hl7.org/legal/ippolicy.cfm?ref=nav

Identifying Information for Specification:

Specification Name and Release Number: HL7 Standard: Clinical Quality Language
Specification, Release 1.2

Realm: Universal

Ballot Level: Standard for Trial Use (STU)
Ballot Cycle: January 2017

Specification Date: May 2017

HL7 Standard: Clinical Quality Language Specification, Release 1 Page iii
© 2014-2017 Health Level Seven International. All rights reserved

Co-Chair (CDS):

Guilherme Del Fiol, MD, PhD
University of Utah Health Care
guilherme.delfiol@utah.edu

Co-Chair (CDS):

Robert Jenders, MD, MS
jenders@ucla.edu

Co-Chair (CDS):

Kensaku Kawamoto, MD, PhD
University of Utah Health Care
kensaku.kawamoto@utah.edu

Co-Chair (CDS):

Howard Strasberg
Walters Kluwer Health
howard.strasberg@wolterskluwer.com

Co-Chair (CQl):

Patricia Craig
The Joint Commission
pcraig@jointcommission.org

Co-Chair (CQl):

Floyd Eisenberg
iParsimony LLC
FEisenberg@iParsimony.com

Co-Chair (CQl):

Chris Millet
chris@thelazycompany.com

Co-Chair (CQl):

Walter Suarez, MD, MPH
Kaiser Permanente
walter.g.suarez@Kkp.org

Co-Chair (CQl):

Kanwarpreet Sethi
Lantana Consulting Group
kp.sethi@lantanagroup.com

Co-Chair (ITS):

Paul Knapp
Knapp Consulting Inc.
pknapp@pknapp.com

Co-Chair (ITS):

Dale Nelson
Lantana Consulting Group
dale.nelson@squaretrends.com

Co-Chair (ITS):

Andy Stechishin
HL7 Canada
andy.stechishin@gmail.com

Co-Author:

Bryn Rhodes
Database Consulting Group
bryn@databaseconsultinggroup.com

Co-Author:

Chris Moesel

The MITRE Corporation
cmoesel@mitre.org

Co-Author:

Marc Hadley
The MITRE Corporation
mhadley@mitre.org

Co-Author:

Mark Kramer
The MITRE Corporation
mkramer@mitre.org

Co-Author:

Robert Dingwell
The MITRE Corporation

bobd@mitre.org

HL7 Standard: Clinical Quality Language Specification, Release 1
© 2014-2017 Health Level Seven International. All rights reserved

Page iv

mailto:guilherme.delfiol@utah.edu
mailto:jenders@ucla.edu
mailto:kensaku.kawamoto@utah.edu
mailto:howard.strasberg@wolterskluwer.com
mailto:pcraig@jointcommission.org
mailto:FEisenberg@iParsimony.com
mailto:chris@thelazycompany.com
mailto:walter.q.suarez@kp.org
mailto:kp.sethi@lantanagroup.com
mailto:pknapp@pknapp.com
mailto:dale.nelson@squaretrends.com
mailto:andy.stechishin@gmail.com
mailto:bryn@veracitysolutions.com
mailto:cmoesel@mitre.org
mailto:mhadley@mitre.org
mailto:mkramer@mitre.org
mailto:bobd@mitre.org

Co-Editor: Aziz Boxwala, PhD
Meliorix
aziz.boxwala@meliorix.com

Revision History
Initial Publication as a DSTU: April 2015
Update 1 Changes:

#954: Changed define clause within the query to let clause to avoid ambiguity in the grammar, as
well as potential confusion regarding local vs global defines

#951: Comments moved to the HIDDEN channel

#950: Changed “matches” to “~”

#949: Changed list indexes to be 0-based instead of 1-based

#948: Changed string literals and identifiers to use industry-standard escape sequences
#944: Clarified example in 2.5.8.2

#911: Fixed incorrect reference to MinValue in 9.6.9

#827: Added List<Code> to Code conversion as implicit

#823: Fixed incorrect definition of the Concept type in 9.1.4

#804: Added Exp operator, inverse of Ln

#803: Renamed Expand to Flatten to better reflect operator semantics

#802: Added examples for properly includes and properly included in

#801: Fixed typographical error

#765: Clarified behavior of value set expansion when code system version is not specified
#763: Added weeks as a supported duration

#762: Fixed an invalid cross reference

#741: Corrected out-of-date diagram of interval operations

#735: Fixed mapping of between operator to ELM

#721: Clarified behavior for forward/circular expressions and function definitions
#719: Clarified behavior of a library when no library header is specified

#718: Clarified documentation of the path attribute for the Property type in ELM
#716: Added ability to use between as an interval constructor for comparison

#713: Corrected description of implicit conversion between structured and class types
#714: Corrected signatures for the Multiply operator in 9.6.11

#715: Clarified that during is a synonym of included in

1.1 Review #1: Changed <> operator to !=

1.1 Review #2: Added support for forward function declarations

HL7 Standard: Clinical Quality Language Specification, Release 1 Page v
© 2014-2017 Health Level Seven International. All rights reserved

mailto:aziz.boxwala@meliorix.com

1.1 Review #3: Fixed table headers for implicit conversion table

1.1 Review #4: Clarified wording for tuple conversion description

1.1 Review #5: Clarified requirements for indexers in property paths

1.1 Review #6: Clarified semantics for multiplication and division involving quantities
#966: Improved semantics of usingDefinition production rule in grammar

#991: Clarified semantics of the conditional expression

#720: Added top-level constructs for code and concept

Update 2 Changes:
Adopted the FHIRPath.g4 grammar as the base expression grammar for the language
Expanded semantics to enable FHIRPath expressions:
Added ability to invoke property accessors on a list
Added $ and % identifier scopes
Added implies operator
Added | as a synonym for union
Added & string concatenation operator
Added promotion and demotion of lists
Added options to support enabling aspects of FHIRPath functionality
Added “method-style” invocation syntax
Added rewrite rules for FHIRPath operations

Added Repeat, Slice, StartsWith, EndsWith, Matches, ReplaceMatches, LastPositionOf,
Children, and Descendents operations

Applied “treat null as empty list” semantics for list operators (e.g. exists (null) now
returns false, not null)

Added ToList operator to support efficient list promotion
Corrected String concatenation mapping
Clarified runtime behavior for options on quantities with incompatible units
Clarifications and errata throughout based on ballot comments
#824: Fixed Substring declarations in ELM
#991: Clarified semantics for conditional expressions
#1009: Clarified semantics and usage of retrieve with codes and terminologies
#1013: Changed semantics of set operators to distinct
#1031: Clarified semantics of decimal equality (trailing zeroes are ignored)
#1057: Added CQL and ELM Media Types and URL.
#1064: Added support for declaration-only libraries

HL7 Standard: Clinical Quality Language Specification, Release 1 Page vi
© 2014-2017 Health Level Seven International. All rights reserved

#1102:
#1105:
#1111:
#1114:
#1116:
#1120:
#1122:
#1196:
#1197:
#1221:
#1223:
#1229:
#1232:
#1233:
#1235:
#1236:
#1237:
#1287:
#1309:
#1310:
#1311:
#1312:
#1313:
#1314:
#1315:
#1316:
#1317:
#1336:
#1337:
#1339:
#1340:
#1341:
#1345:
#1348:

Clarified quoted-identifier semantics

Added version header to CQL grammar file

Clarified semantics of time-based quantities

Clarified calculations involving weeks

Specified semantics for CQL versioning within libraries

Clarified semantics of date/time arithmetic with timezones

Added choice types

Clarified semantics of multiple with/without clauses in a query
Clarified semantics of weeks for date/time operations

Added warnings for decimal truncation of time-valued quantities
Added external function definitions to support import of external libraries
Clarified subtype vs proper subtype definition

Fixed incorrect IndexOf documentation

Fixed Implies signature

Clarified semantics for Upper and Lower operators

Clarified semantics for Min and Max aggregate operators

Clarified semantics for Age in a population context

Clarified rules for interval construction

Called clause in the include definition is now optional

Added source locator information to ELM

Added result type information to ELM

Specified JSON format for ELM

Added less than/more than qualifiers to interval operator phrases
Provided examples for time interval calculations

Clarified type inference rules for queries

Added EndsWith operator

Fixed an error with escape characters not parsing correctly
Clarified semantics for before/after timing phrases

Added on or/or on qualifier to timing phrases to enable inclusive before/after
Clarified sort behavior in the presence of nulls

Added Message operators to support errors, warnings, messages and tracing
Relaxed syntactic restriction on terminology expression in retrieves
Corrected interpretation of timing phrases

Clarified let semantics and added documentation for the let clause

HL7 Standard: Clinical Quality Language Specification, Release 1
© 2014-2017 Health Level Seven International. All rights reserved

Page vii

Acknowledgments

The authors wish to recognize the S&I Framework Clinical Quality Framework Initiative Work
Group and the HL7 Clinical Decision Support, Clinical Quality Improvement, and
Implementable Technology Specifications Work Groups for their contributions to this document.

Copyrights

This material includes SNOMED Clinical Terms ® (SNOMED CT®), which are used by
permission of the International Health Terminology Standards Development Organization
(IHTSDO). All rights reserved. SNOMED CT was originally created by The College of
American Pathologists. "SNOMED ®" and "SNOMED CT ®" are registered trademarks of the
IHTSDO.

This material contains content from LOINC® (http://loinc.org). The LOINC table, LOINC
codes, and LOINC panels and forms file are copyright (c) 1995-2011, Regenstrief Institute, Inc.
and the Logical Observation Identifiers Names and Codes (LOINC) Committee and available at
no cost under the license at http://loinc.org/terms-of-use.

This material contains content from the Unified Code for Units of Measure (UCUM)
(http://unitsofmeasure.org). The UCUM specification is copyright (c¢) 1999-2013, Regenstrief
Institute, Inc. and available at no cost under the license at
http://unitsofmeasure.org/trac/wiki/TermsOfUse.

This material contains quality measure content developed by the National Committee for Quality
Assurance (NCQA). The measure content is copyright (c) 2008-2013 National Committee for
Quality Assurance and used in accordance with the NCQA license terms for non-commercial use.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page viii
© 2014-2017 Health Level Seven International. All rights reserved

http://loinc.org/terms-of-use
http://unitsofmeasure.org/
http://unitsofmeasure.org/trac/wiki/TermsOfUse

EXECUTIVE SUMMARY

In support of the United States’ national objectives for healthcare reform, the Office of the
National Coordinator for Health Information Technology (ONC) Standards and Interoperability
(S&I) Framework has sponsored the development of harmonized interoperability specifications.
These specifications are designed to support national health initiatives and healthcare priorities,
including Meaningful Use, the Nationwide Health Information Network, and the ongoing
mission to improve population health.

The nation is reaching a critical mass of electronic health record systems (EHRs) that comply
with data and vocabulary standards. Providers seeking to meaningfully use EHRs face a variety
of challenging tasks. Those tasks include assessing needs, selecting and negotiating with a
system vendor or reseller, implementing project management, and instituting workflow changes
to improve clinical performance, control costs, and ultimately, improve outcomes. Additionally,
many providers face the challenge of integration and interoperation with disparate systems. Many
institutions use their own proprietary vocabularies and data models. Though this may offer some
internal flexibility, it comes with a high, often hidden, long term maintenance cost.

In support of this wide deployment of EHRs, there is an opportunity to implement a learning
health system that includes clinical quality measurement and improvement aspects and provides a
broad range of benefits that can contribute towards improved health of individuals and the
population as a whole (refer to “Digital Infrastructure for the Learning Health System: The
Foundation for Continuous Improvement in Health and Health Care: Workshop Series
Summary”).

The S&I Framework Clinical Quality Framework Initiative (CQF) is developing a foundational
specification, reusing much of the work currently done in health quality standardization, to
enable the structuring and encoding of quality content for use as “knowledge artifacts.” These
artifacts can be used in support of many areas of the healthcare system, including quality and
utilization measurement, disease outbreak detection, comparative effectiveness analysis,
evaluation of drug treatment efficacy, monitoring health trends, and other public health, research,
and information sharing across the continuum of care. Although the scope of this project focuses
on quality knowledge and decision support, potential uses for CQL are not limited to these areas.
For example, the CQL grammar can be used to express formal information extraction and
transformation rules for converting and deriving data as it is moved from one representation or
use to another.

One key benefit of this proposed approach is the definition of a “lingua franca” for the exchange
of quality knowledge and artifacts. Rather than having an unscalable network of point-to-point
communication channels, each with its own set of transformations, different organizations will
only need to transform their content to a CQF-compatible format to communicate effectively
with any other point in the network of providers that comprises today’s healthcare system. If the
models and vocabularies are rich enough, some quality vendors may opt to use CQF as an
internal specification in the future.

This specification is developed in support of the CQF Artifact Sharing Use Case and is intended
to assist implementers in the development of clinical quality knowledge artifacts for both the
decision support and quality measurement domains. The approach adopted in this specification is

HL7 Standard: Clinical Quality Language Specification, Release 1 Page ix
© 2014-2017 Health Level Seven International. All rights reserved

designed to be flexible and reusable, and to provide a baseline for health quality vendors and
implementers of systems that create and use knowledge artifacts to improve the health of
individuals and the population as a whole.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page x
© 2014-2017 Health Level Seven International. All rights reserved

Table of Contents

T INTRODUCTIONooiiiiiiiiiiiii ittt ettt ettt ettt ettt e et et e e et e e e e e e e e e e e e e eeeees 24
1.1 7= 1o (o | (o101 o To [OO O PP PP OTPRP 24
1.2 Clinical Quality Framework INtiative ... 26
1.3 Y 0] 0] o ¥- T o 26

LR TR B 0 g oY gl =Y (=T o= o2 1 L= 27
LR T2 oo [o= | B =T = 1= o £V 27
LR TG T o 03] (o= | B =T = 1= o (Y 28
1.4 AUGIEINCE ...ttt ettt et a et r e 29
1.5 Scope of the SPeCIfiCatioNuueiiiiii e e e e 29
1.6 Alignment to CQF Artifact Sharing Use Case..........ccoiuiiiiiiiiiiiiiiie e 30
1.6.1 Use Case Assumptions and CONItIONScoocuuiiiiiiiiiiiiiiiie e 30
1.7 Relationship to Other HL7 SpecifiCationscoouiiiiiiiiii e 31
1.7.1 Health Quality Measure Format (HQMF) ... 31
1.7.2 Clinical Decision Support Knowledge Artifact Specification (KAS)ccocoveiiiiii e 31
1.7.3 Fast Healthcare Interoperability Resources (FHIR) ... 31
174 FHIRPAh .o bbbt b ettt ettt b e be e sae e s e nbeenas 31
1.8 Organization of this SPecCifiCationcuueiiiiiii e 31

2 AUTHOR’S GUIDE oo oo 33

21 DECIAratIONS ...t e e e 33
D2t T T I o = 1 Y TP PTPRT 34
2.1.2 Data MOGEIS...... .ottt 34
203 LIBFAIIES ettt 35
D I =14 a1 g To] (o T | AT PUU T TPPPPPPPRPP 35
205 PArAmMETEIS ..ot 36
20,8 CONEXL .ot 37
207 SEAIEMENES ... 37

2.2 REITIEVE ...ttt e et e e et 38
2.2.1 Clinical Statement SITUCUIEooiiiiiiieie e e 38
2.2.2 Filtering With TEermMiINOIOGYccueeieiiiie i e e e e e 38
2.2.3 REtEVE CONIEXE ..ottt ettt e et e et e e nees 39

2.3 L0 TR T 1= PR POPPRPTRTPRR 40
b Tt B 11 =1 o o T ISP PP PP PP PPPPRPPPPPPPR 40
D S | g T-T o] oo [PSPPI 41
D TR TS To] 1 o To PP PPUT R PTOPPPPPPPPP 41
2.3.4 RelatiONSNIPS ..coiiiiieee et e e e e e bbb rreeaaaaeana 42

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xi

© 2014-2017 Health Level Seven International. All rights reserved

2.3.5 FUILQUETY ...ttt ettt e e e e sttt e e e e ab e e e e b bt e e e st e e e e nbe e e e e nnbae e e e nnnes 43
24 A2 10 1= PP SPR TR 44
241 SIMPIE VAIUES ...ttt e e s e e e e e s e st e e e e e e e s s s aate e et eaeeesannsnraneeeeeaeaanns 45
2.4.2 CliNICAI VAIUEScveiiiieeieee ittt ettt e e s enn e s n e e 46
2.4.3 Structured Values (TUPIES)c.uuviiiiie i e e e e e s s e e e e e e s s st aaaeeeeaeeennns 49
244 LISEVAIUESooiiiiiii ettt 50
245 INEEIVAI VAIUESooiieeii ettt 51
2.5 L@ 0 T=T = 1110 1= PRSP 52
2.5.1 ComPariSON OPEIAtOrSceiiiiiiiiiiie ettt ettt e e e e s s sttt e e e e e e s s sbebeeeeeaeeesanrebaeeeaeeeeaanns 52
P oo o= M @] oT=Y =1 (o] £ T PO T PP PPPPPN 54
2.5.3 ArithmetiC OPErators.cocuuiiieiiiiii ettt ettt b e e et e e 54
2.5.4 Date/Time OPEIALOrSc.coiuiiiieiiiiii ettt ettt e e st e s s b b e e e e nbee e e e eneee 55
2.5.5 Timing and INterval OPEratorsccciiiiiiiiiiie i e e e e e e e e e e s serabreaeeaeeeeaans 61
2.5.6 LISt OPEIAtOrSccoi it e e e e et e e e e e — e e e e e e e s rarararaaeaeaaan 67
T A o [(=To =Y (S @] oT=Y = (o = SR PPERRR 72
R T O [T Tor= 1 @ o =T = (o] = TSR PPRPRR 73
2.6 P U1 fo T TaTe AN) 7= Tox ol o T | [o SRR 75
2.6.1 RUNNING EXAGMPIE ...eeee s a e e na e a e s e e e e e e n e e e e e e aeaeaas 75
2.6.2 Clinical Quality MEasUIre LOGICcoiuuriiiiiiiiieiiiiie ettt ettt 76
2.6.3 Using Define StatemeEnts.........ooouiiiiiiii e 80
2.6.4 Clinical DecCisSion SUPPOIt LOGICeiiiiriiiiiiiiiie ittt 82
2.6.5 Using Libraries t0 Share LOGICcoouuuiiiiiiiiiiiiii et 85

3 DEVELOPER’S GUIDEuuuuuuuuuutuuununnnnnnnnnnnnnnnnnnnsnnnnsnssnnnnsssssssssssssssssssssssssssssssssnssnnns 88
3.1 LeXiCal EIBMENTS.......oiiiiiiiiii ittt 88
K T I B VAT 1) (oS o X Lo S PP PRP PP 88

K I O7o 1091 101 o | T PP PRP PP 88
31,3 LIEEIAIS e et as 89

K S 01 oo L PP PRSP 89
1.5 KEYWOIAS .ottt e ettt e e e e e e et e e e e et e e e e s e e e e e e e 90

K T I T [0 1= 01111 = PP PRSP 90
TR B A O o 1= = | (o gl (=Yo7 =To [T o[t RNt 91
318 CaSE-SENSIIVITY ... e et e e e e e e e e e e e aaa 92
3.2] o] = 1= TP P PP P PP PPPRPP 93
3.2.1 ACCESS MOUIfIEIS ...ttt ettt 93
3.2.2 Identifier RESOIULIONoicuiiiiiiiiiie ettt 93
3.2.3 FUNCHON RESOIULIONcoiiiiiiiieieee et 94
3.3 Data MOGEIS ... 94
HL7 Standard: Clinical Quality Language Specification, Release 1 Page xii

© 2014-2017 Health Level Seven International. All rights reserved

3.3.1 Alternate Data MOAEISc.oouuiiiiiee e e et e e st e e e e e e s e e e e e eaas 94

G TR T2 |V 18] L] o (=Y B = = TN 1Y 0T =Y £ 94
3.4 1Y/ 01 P 95
3.4.1 SysStemM-DefiNed TYPES .ooiiiiiiiiiiiii et e e e e e e s e e e e e e e a e araaeaeaann 95
S o 1= Tor Y/ T TR 1Y/ 1= PR PSERRR 96

G 3 T 1Y/ o TN 1= 1] Vo 97
K O o (o I Y/ o1 TSP P PP OPPPPP PP 97
345 TYPE INFEIENCE ... ettt e e s s 98
K ST O7o 101V =T 1] o O OO U PP PPPPPPON 100
K A 07 1 1] o [« [P O TP PTP U PP PPPRPON 102
3.4.8 Promotion and DemOtIONc.uuiiiiiiiii e 103
3.4.9 CONVErSION PrECEAGNCEoiiiiiiiie ittt ettt e et e e 103
3.5 ConditioNal EXPrESSIONScccuiiiiiiiii e e iiciieeee e e s s e e e e e s st e e e e e e s s s etbte e e e e e e s e ssnraneeeeaeeesaanns 104
3.6 N [U] [o] foTe Tor=T M @] o= = 1 (o] &= PR 105
3.7 o Yo @] o 1T =1 (o] = P ERPRR 105
3.8 Introducing Context in QUETIESccooiiiiie ittt e e e sbae e e e e 107
3.9 MUItI-SOUICE QUETIES ...ttt et e b e s b e e ssb e e sir e e s bneesnreeenneens 107
3.10 NON-REtrieVe QUETIEScoiiiiiiiie ittt sab e e s b e e br e e snbeeesnreeanneas 109
311 Defining FUNCHONScooiiiiiiiiiiee ettt e st e e eneees 110
312 USING FHIRPAN ...ttt e 111
3.12.1 Path TrAVEISAL.....cei ittt ettt e e s bt e e et e e e e 111
3.12.2 List Promotion and DemOtiONc.uuiiiiiiiiiiiiii et 111
3.12.3 MisSiNG INFOrM@LIONooiiiiiiii e 112
3.12.4 TYPE RESOIULION ...t e et e e e e e s bbb b e ee e e e e e eaas 112
3.12.5 Method INVOCALIONeeiiiiiiiieiee it e e s 112
4 LOGICAL SPECIFICATION......ciiiiiiieeeee e 114
4.1 EXPIESSIONS ...ttt e e e e e e s 115
4.2 SIMPIE VAIUES ...ttt e b bt e e s bttt e e s enb et e e s nnbte e e s anneeee s 115
4.3 ComMPAriSON OPETATOTSeeiiiiiiiiie ittt ettt e et e e e s be e e e sbe e e e e sabae e e e sbbeeeesnbaeeeesnbeeeeeanes 115
4.4 [WoTo[[oz= 1@ o 1=Tr= | (o] {= T PRSPPSO 116
4.5 U] [o] oTo for=1 M @] o<1 - | (o] £= T TP 117
4.6 ConditioNal OPEIatOrSccoi i ———— 117
4.7 E N 1 gL gLy [@ T=T =1 (o] = PP PPPPPPRt 119
4.8 1T aTo @] o =T = (o] {= F PP TTUPTPPPPPTTN 120
4.9 (D1 I TaTo I T g [= Y @] oT= = (o] TN 121
S O [0 (=Y oV IO o 1= = (o] TN 122
411 SHUCIUIEA VAIUES.......oiiiiiiec ettt e e 123
HL7 Standard: Clinical Quality Language Specification, Release 1 Page xiii

© 2014-2017 Health Level Seven International. All rights reserved

g 1] Y 7= [1= 124

g B B o [| (=To b= 1 (Y @] 01T = (o] =SSR 126
4.14 Type SpecCifiers and OPEratorSccccuuiiiiieiee e e s e e e s e e e e e s s st re e e e e e s e aaneaees 126
N T O U 1Ty o PP RPPRP TR 127
B T =10 13 o T o Yo o2 128
4T EXEErNal DAtacoocveiiiiiiiiie et 128
g I O [g1 for= | I @ o =T = 1 (o) = TR PERRTP 129
4.9 PAr@mELEIS ..ttt b e b e e e e b e et e e bt e e st et e e aanreeaeaa 130
4.20 Data MOGEL.... ..ot e e e e e 130
N I | o] = T ST PP O PP PP PPPPPPPPPPRI 130
4.22 Errors @nd MESSA0ESuuiiiiiiiiiie ittt ettt ettt e e b b e e e et b e e e abaeea e 131
5 LANGUAGE SEMANTICSooovtuuiiiiiieeeieeieetiiie e e e e e eeeeeeeaaaa e e e e eeeeeeeaaaaa e eaeeeeeeensnnnnnnes 132
5.1 Clinical Data Retrieval in Quality Artifactscoociiiiiiii e 132
5.1.1 Defining CliNiCal Dataeoiiiiiiiieiii e e 132
5.1.2 CoNfOrmManCe LEVEIS...........eiiiiiiiiieii e 133
5.1.3 Artifact Data REQUIrEMENESoiiiiiiiiiiiiii e 134
5.2 Expression Language SEMaNtiCSccuuvieiiiiiiiiiiiie et 135
5.2.1 Data MOAEI ...t e 135
5.2.2 Language EIEMENTS.......couuiiiiiiiiii e 136
5.2.3 Semantic Validationoooiiiiiii e 137
5.2.4 EXECULION MOUE ...ttt e 138
5.3 QUETY EVAIUALION ..ottt 140
5.3.1 EVAIUAIE SOUIMCESoeiiiiiiiii et 140
5.3.2 HEIATION ... e 140
ST T S T o SRS PR 141
5.3.4 Implementing Query Evaluation ... 142
54 TIMING CalCUIALIONSceiiiiiiii et enneeas 142
I o T B 1= {1 71 o] o < R TPRP 142
5.4.2 Date/Time ArtNMETICooouiiii et 145
5.5 Precision-Based TiMINGc..uviiiiiiei e e e 146
B5.5.1 UNCEIMAINTY ...ttt e ettt e e e e e s bbb et e e e e e e e e e nbbbreeeaaeeeaaan 147
5.5.2 Determining Difference and DUrationoooouiiiiiiiiiiiiii e 149
5.5.3 TMING PRIASESttt ettt e e e e e sttt e e e e e e e s bbb beeeaaeeeann 150
5.5.4 Implementing Precision-Based Timing with Uncertaintyccccccoiiie 152

6 TRANSLATION SEMANTICSuuuuuuuuuuunuuunnnnnnnnnnnnnnnnsnnnnnsnennnsnnnssassseanssssnanssnnsanannnssnnnes 153
6.1 O 0 I o T Y S 153
B.1.1 DECIAratioNS........oiiiiiieii e 153
HL7 Standard: Clinical Quality Language Specification, Release 1 Page xiv

© 2014-2017 Health Level Seven International. All rights reserved

G0t O 1Y/ 0T PPN 154

6.1.3 Literals and SEIECIOISuuiiiiiiiie e 154
B.1.4 FUNCLIONS ..ottt e e e et e e e e e s e bbb e e e e e e e e e aabbrreeeeeeeeaan 154
B.1.5 PRIMASES...ceeiiiiiii it e e e e e e e e e s e b e e e e e e e e aaa 160

N T @ U1 o PR TPRP 160

6.2 I (o R O | PSPPSR 160
02 B o] =E= Tod o PP PPPPPRPPP 162
0 I {2 1= T PP TP PPPRPRP 162
L0 B |1 PR OPPPPRPRP 163
T S To] PSR PPPREEPRR 163

7 PHYSICAL REPRESENTATIONcoituiiiitiiiii et e et e et e e et e e st e e e et e e saa e eeane e e et e eeannns 164
7.1 S Tod 1T o 1= 1 - PRSPPI 164
7.1.1 Media Types and NAmMESPACESuuuuuuuuruuuierrieieiuieirieieieinrereiererererere—————————————————————————. 164

7.2 Library REfErENCES........vviiei e 165
7.3 Data Model REFEIENCESuiiiiiiei it e e e s e e e e e e s e e 165

8 APPENDIX A— CQL SYNTAX FORMAL SPECIFICATIONccvvuieeiiiiiieeeeeriieeeeerinneeeeens 167
8.1 D CTo = = (o] o 1 TP TP PPPPTPT PP 167
8.2 B TSRS o= T3 1= SRR 169
8.3 SEALEMIENES ..t e e e e e e e e 169
8.4 L T =5 = S 170
8.5 EXPIESSIONS ...t a e e 172
8.6 O NS e 174
8.7 IS =T U | = 176

9 APPENDIX B —CQL REFERENCEccccvuuiieiiiitieeeeeeieeeeeeeteeeeeeteeeeeesaaeeesesaanaeeeens 177
9.1 B 1= ST PP T PP 177
S Ry Y o PSPPI 177

LS TRt I = T Yo | Y T o T OSSR 177

LS TRt T T o T [OSSR 177

S I ©7o 3T =Y o PR TPRP 178

LS TR R T I - | (=) T = 178

1S B0 LG T 19 =T o o = PSRN 178

S I B A [(=T =T PO P PP PP PP PP PPPPPPRPPPPN 178
.18 QUANTIY ..o 179

S I R] o o [TP PT TP PPPPPPRPPP 179

S e 0 T3 T SRR 179

9.2 (oo o=] W@ o =] £=1 (o] £ T RO PRTPT 180

S 0 B 2 o To PR TP PPPPPPPPTP 180

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xv

© 2014-2017 Health Level Seven International. All rights reserved

LS B 1 1 0T o] =SSP 180

S22 B (o S PO PT RSP 181
S © | OO S TP PSP 181
S D (o PRSP PR PRRP 181
9.3 B TSRO 0 =T = 1 o] S 182
SRS Tt N OO S PR 182
SR I O] o 11 1o [T o L USROS 182
SR TG T O7o 101 =T o SO PP PP PPPPPON 183
O.3.4 DESCENAENESeeiiiiieiii ettt ettt e e b e e e e 184

SR T - PSSR 184
9.3.6 TOBOOIBAN ...ttt bbb e e e 184

S N A o @70 o7 o AP P PR PPPPPN 184
9.3.8 TODALETIME ...ttt s e e e 185
9.3.9 TODECIMAN ...t 185

1S TR T 0T o[1 =Y 0 =Y N 186
S 20 B B o @ U T T o 117 TP RTTPRP 186

LS TR Tt I 103 41T TSRO PRSEPRRS 187
SRS Tt 1 T o 13T T T PR P PP ST 187
9.4 NUIOIOGICAl OPEIALOrSeeeiiiiiiei ittt e e e 188
S oy B O o =1 =TT o ST PTPTPPP 188
S 32 - | RS PR 188
9.4.3 ISFAISE ..t aeee 188
S 1 1 U= T TP PTPRPRN 188
9.5 CompPariSON OPEratOrsccooiiii i —————— 189
.51 BOIWEEN ... 189
9.5.2 EQUAL ...ttt ettt b e e b ntb e be e nareennreas 189

LS IR TR T o [117Z= 1 L= o | N 190
O.5.4 BreALEI ... et 190

O R T €Y= 1 (=T O gl o U - | PPN 191

S BT G R I PO PP PP P PP PP PPPPPPRPPPP 191
9.5.7 LESS OF EQUAL.....eiiiiiiiii ettt ettt e e e e e e e et e e e aba e e neee 192
SR T o o U S PR 192
9.5.9 NOt EQUIVAIENTo e e e e e e e e e e e e e 192
9.6 ArtMELIC OPEIatOrSeiiiiiiii ettt e e et e e e 193
LS Tt I oY SRS 193
0.8.2 A .t b bt h bt bt e b et b e e be e e abb e e abe e e nareeenteas 193
HL7 Standard: Clinical Quality Language Specification, Release 1 Page xvi

© 2014-2017 Health Level Seven International. All rights reserved

9.6.3 CIlING ..t 193

9.6.4 DIVIAE ... ceiiieieiiie ittt ettt Rt R e 194
LS SIS T (oo PRSP PR PRRP 194
S TG o o T PSSP PP PRRP 194
LS T A X Yo OO TP PSPPI 194
LS I o OO P PP ST 195
9.6.9 IMIAXIMIUIM ...ttt ekttt e e a kbt e e skt e s e b et e e ek bt e e e nb et e e e st e e e e enbneeeeantee 195
9.6.10 IMINIMIUM 1.ttt ettt e e b bt e st et e shb e e eab e e et e e e smbe e e ebe e e eabe e e beeesabeeanteas 195
LS Tt Bt T /o T [R TSRS 196
S Tt D U L4 o) RSP SPR 196
9.6.13 INEGALE ...ttt a e neee 196
9.6.14 PreaECESSONeiiiiiiiit ettt ettt ettt e s et e e e b e e s e bt e e e bbbt e e e n b e e e e abr e e e e e 197
9.6.15 POWET ...ttt 197
9.6.18 ROUNG ...ttt etttk h e bt ek et e s b et e shs e e eR bt e e b e e e sh b e e e be e e ann e e anre e e nnreennreas 197
9.6.17 SUDIIACT ...ttt h e s bt s bR e b e nar e nnreas 198
9.6.18 SUCCESSON ...eeuiiieitit ettt e ettt e s ettt e skt e s bt e sh bt e e bt e e b et e sabe e e sh s e e e Rt e e e b e e e shbe e e abeeennn e e e be e e nnreeenneas 198
9.6.19 TIUNCALE......ciiiiiiiii et s e s et e e e e e e e e e e e e e 199
9.6.20 TrunCated DiVIAE........veiiiiiieiie it 199
9.7 SHNG OPEIALOrS....cciiiiiiiiiteiee ettt e bt e bbbt e st e e e s aabb e e e s bt e e e s annneeas 199
S A TR ©7o 1011 o [= SO RTPTPPPR 199
9.7.2 CONCAIENALEeeeiiiieeiie ettt ettt e e abae e e neee 199
S0 N = o To £ 4 SRR 200
S A [0o (=) = PP PTPPP 200
9.7.5 LaStPOSHIONOTcoiiiiiie e 200
0.7.68 LeNGIN e b et b e nar e nnneas 200
S A o 1 PP PP PRPRN 201
O.7.8 IMALCNES ...ttt 201
O.7.9 POSIIONOS ...t 201
S B LI =T o= Tt =11 = o T PN 201
SR80t B TS T o S PR 202
SRt S - 3 (11 o ST 202
S B TS 10 o] 141 T R PTTPRP 202
S A U o o= PP PP PP PP PP PP PP PPPPPPRPPPPN 203
9.8 Date/TimeE OPEIAtorSccoiiiiiieiiiiie ettt ettt e et e e e st e e e e anbe e e e e snbaeeeeaneee 203
1SR Tt ¥ T ST 203
SR I N i (= S PP PTO TP O SPPRO 203
HL7 Standard: Clinical Quality Language Specification, Release 1 Page xvii

© 2014-2017 Health Level Seven International. All rights reserved

LS TR TG T = 1= (o] o <Y 204

9.8.4 DAtETIME ...eeeiiiiieii ittt 204
9.8.5 Date/Time ComMPONENT FIOMcciciiiiiiiiiiiiei e e e e s s r e e e e s s s e e e e e e e s snnraeeeaaeeesanns 205
9.8.6 DIffEIrENCE ...eeiiiieiiii et 205
SR A B 1U = 1o] o [PPSR 206
SR TS I (o OO P PSP 206
9.8.9 SAIME AS ..ttt a b e e e e b e e e e 206
9.8.10 SAME OF AT ...ttt e et e e e e e e e 207
9.8.11 SAME OF BEIOIE.....cieiii ettt e e e e 207
SR Tt DS 10 o= o2 QSRS 208
SR Tt 1 T 103 = TSRS 208
SR Tt R 0 110 - S SPR 209
SR Tt £ T o T F- | PP R PP PT ST 209
9.9 La1 T Y= T O o 1T =1 (o] = PR 209
SR Tt BN i (= SO PR PP PR PU R PRRTP 209
0.9.2 BEIOrE ...iiiiiiiee ettt E et e bt nr e nre e nnr e nnreas 210
LS IR T 0o =T o1 U PPEPRPS 210
SR I A 070101 v=] TSP P PP UPR PR 210
1SR TR T = oo S PR 211
SR TG o SR PR 211
S B A o 11 - | O PR PTPPP 211
9.9.8 EQUIVAIENT ...t bbb aeee 212
IR B (et o] S PR RT R PTPPP 212
1SR Tt [O [B TP PSP PP PPPT PP 212
9.9 11 INCIUAES ...ttt e e st e e st e e e e e e e e e 212
9.9.12 INCIUAEA IN 1.t e s e s et et e e e e e 213
9.9.13 INEEISECE ...t 213
9.9.14 IMBEES ...ttt bbbt b e e b e sh b e b e nbb e e be e e nane e anneas 214
LS IR T R T o) g o [U = | RPN 214
9.9.16 NOt EQUIVAIENT ..o e e e e e e e s r e e e e e e 214
S R A O O 1 (=] RPN 215
9.9.18 ON OF BEFOIEeiiiiiieii ettt e bt e s st e e e nbe e e e e nbae e e e neee 215
S I e T @ =T = T o L= S PR TPRP 216
9.9.20 POINT FIOM ittt e et e e e e s e et e e e e e e b e e e e e e e e aae 216
9.9.21 Properly INCIUAESooiiiiiiiiit et e e e e e e s e r e e e e e e 216
9.9.22 Properly INCIUAEA IN....cooo et e et e e e e e e e e ee e e e e e eae 217
HL7 Standard: Clinical Quality Language Specification, Release 1 Page xviii

© 2014-2017 Health Level Seven International. All rights reserved

9.9.23 SHaA ... e 217

SR I S - 4 £ OO RSTPPT ST 218
SR I U 4 o] o OO STRPT RSP 218
9.9.26 WWIATh ... et 218
S TRt O 1 @ T o =T = (o) = SRR 218
SR L0 B 7o 01 = 1 o T PRSP RPRR 218
S L0 13 1 To SRR UUSPRR 219
S L0 T =T TU = | USROS 219
9.10.4 EQUIVAIENT ... et e e e e e e ettt e e e e e s e bbb et e e e e e e e ababreeeaaeeeaaan 219
9.10.5 EXCOPE. .ttt et a e e e abe e e e e 219
9.10.8 EXISES ..vveiieeieiiiee ittt ettt ettt b ettt ettt eh bt R bt e e b e e e eR bt e e naeeeatbeeanbeeennteeenneas 220
S L0 A = 1 Y o PSSR 220
S L0 Tl = ST PP R TP PT RPN 220
SR L0 R I [OO RR PR PPRP 220
9.10.10 INCIUAES ...t s e s e e 221
9.10.1T INCIUAEA IN et e st s e e e nnn e br e nnr e e nnreas 221
9.10.12 INAEXEI ettt 221
9.10.13 INAEXO .ttt n et e e nnreenreas 222
9.10.14 INTEISEC ...ttt e e e e 222
SR 0 T I = T RSP 222
SR 0 T =Y o oo ST 222
9.10.17 NOEEQUAN ...ttt e e e e e 223
9.10.18 NOE EQUIVAIENT.......eiiiii ettt e e 223
9.10.19 Properly INCIUAEScooiiiiiee ettt e e e e e e bbb eee e e e e e e 223
9.10.20 Properly INCIUAEA N ..ot e e e e bbb e e e e e e e 223
9.10.21 SINGIELON FrOM...eeiiiiiiiii et e e ettt et e e e e e s bbb e ee e e e e e eaa 224
9.10.22 SKIPD -tttiutetettte ittt etttk bbbt E et b et ekt e R b e e e bRt e aR b e e be e e Rb e be e e nareenaneas 224
S L0 T ¥ | DO OO R TP UUPTPPRO 224
S L0 - | - T T PP S T UP R OUPPPRO 224
1SR 0022 T O [o1 o ST 225
911 AQGregate FUNCLIONSuiiiiiiie et e et e e e e e eeeas 225
LS R Tt T [1 = ST 225
SR T N 0 I T ST 225
SR TR T Y o S TR 225
LS R T 7o 0 o | SR 226
S ST - b PO P TP OU PP 226
HL7 Standard: Clinical Quality Language Specification, Release 1 Page xix

© 2014-2017 Health Level Seven International. All rights reserved

9.11.7 MEAIAN ..ttt n et n e 227
9.11.8 MO ...ttt R e 227
9.11.9 PoPUIAtIoON STADEYciiiiiiii e e s e e e e e e s et e e e e e e s rraaeeeaaans 227

1S T e e O o o U F= 11 o] = T =T L= P 227
SR P B S (o | 0 T PSPPSR PRR 228

SR Pt 1 T o R TSRS 228
S B TV = 4 =1 o o= PP U PP PPPPPPON 228

S It D O 1101 (o= I @] o= = (o] = PR UOTPR 228
SR T o T S TSRS 228

S B e 1= L SRS 229
9.12.3 CaAlCUIALEBAGE ...t 229
9.12.4 CalCUIALEAGEALeeeeeie e e e e s e e e e e e e e s e — e e e e e e e e aa e reaaeaeaaans 230
9.12.5 EQUAL ...ttt E e b et nn e r e e nnr e nareas 230

LS TR 2 T o [11772 1 =Y o 230
9.12.7 IN (COESYSEIM) ..eiiiiiiiii ettt ettt ettt e sttt e st e e s s b bt e e et b e e e e nsbee e e enbaeeeennbaeeeennees 231
9.12.8 IN (VAIUESEL) ...ttt et e et e e et e e e e b e e e e e nnba e e e e nbae e e e anees 231
9.13 Errors and MeSSagiNg........ccoviiiiiiiiiii e 232
S B Ty B V1= - To L= T O PR PTPTPPPN 232

10 APPENDIX C — REFERENCE IMPLEMENTATIONScccovtiiiiiiiiieeeeeeeeeeeniiie e 233
10.1 CQL-ELM Translator Reference Implementation ... 233
10.2 CQL Execution Framework Reference Implementationcccccooiii e 233
10.3 Other CQL-related TOOISouiiiiiiiiiee et e e s ee e 233
1" APPENDIX D — REFERENCEScuuiiiiiieiiiiiiiiiiiieeeeeeeeeeeeainn e e e e e e eeeeennnnnnnaeeeees 235
12 APPENDIX E — ACRONYMSciiiiiiiiiiiiiiieeeiiiie e e e et e e et e e e et e e e eaan e e e e eaaa s 236
13 APPENDIX F = GLOSSARY ... 238
14 APPENDIX G — FORMATTING CONVENTIONSccoooieeiiiiiiiiiiieieeeeeeeeeennaie e 240
14.1 Case-Related CONVENLIONScoiiiiiiiiiiii et e e 240
14.1.1 CQL-DEfiN@A CASING ...eiiiiiiiiiieiitiiee ettt et e et e et e e e anbre e e e aneee 240
LS o= Ter 1o To I 00 g 1Y/ =T o (o] o E PRI 241
14.3 Operators and FUNCHONSc.uiiiiiiiiie ettt e e et e e e sbaeee e 241
L R B O o T - (o] PP PSR 241
T4.3.2 FUNCHONS ...ttt e e e s ettt e e e s e s e et e e e s e e e e e e eeees 242
T4 LILEIAIS .ot e et e et e e e e e e e e 242
T4.4.1 QUANTHIES. ...eeiee ittt e e 242
T4.4.2 INTEIVAIS ...t 242
L T I (3= Vg o B U] o[N 243

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xx

© 2014-2017 Health Level Seven International. All rights reserved

(T O V=Y 5 1Y 243

14.6 Syntax HIghlIGhtingccveiiiiiiiie e 244
15 APPENDIX H — TIME INTERVAL CALCULATION EXAMPLEScooovviiiiiieeieeeee, 245
15.1 Calculating DUration iN YEAIS.........ccuueiiiiiiiee ettt et sb e e snneee e 245
15,11 DEfiNItION ... 245
15.1.2 EXGMPIES ...ttt e ettt e e e s et e e e e e e e b e e e e e e e e e e b rrreeaaeas 246
15.2 Calculating Duration in MONTNScoiiiiiii e 247
15.2.1 DEFINILION ..ttt et b e b e e s bbb e st nbeenene s 247

L T - 11 1] 0] =Y 247
15.3 Calculating DUration iN WEEKS...........ccuuiiiiiii et e e e e e e e e e s nnn s 248
15.3.1 DEFINILION ..ottt h e bttt e bt e she e e ab e bt e b e nbeenrae s 248
LS TRC T - 11 1] o] = 248
15.4 Calculating DUration iN DAYScccoiiiiiiiiiiec i e e e e s et e e e e e e e e s e nnnreees 248
ST B B T 1 e PSSRSO 248
15.4.2 EXAMPIESeeiiiiiiieie ettt ettt e bt e s ab e e e 248
15.5 Calculating DUration in HOUISuuiiiiiiiiieice ettt 249
15.5.1 DefiNItION ... 249
15.5.2 EXAMPIESeeiieiiiiii ettt e et e e b e e e e e 249
15.6 Calculating DUuration in IMINULEScooiiiiiiiiiie et 249
15.6.1 DEFINILION ..ottt ettt et bt e sae e e bt et e e nbeenbeenreenene s 249
LS TSI == 1 1] o] = 249
15.7 Difference CalCUlatioNScuuviiiiiiiiiiii e e e 249
15.7.1 EXAMPIES ...ttt 250
16 APPENDIX | — FHIRPATH FUNCTION TRANSLATIONccooiiiiiiiiieeeeeeeeeeeeeee e 251
T T~ [SRR 251
16.2 LAIIFAISE() couveeeeeiteeeee ettt h ettt b e bt b e b et et et ene e et nre e e 251
(LT BT [I U= TSRS 251
16.4 ANV AISE() coeiiiiiiit e e e e e s e e e e e e e e ree s 251
(L R T 10|V I (U =T T PP RTPPT TP 251
(LT T T (OSSR 251
(L I A o 11 To [=T o T PRSP RTPP RO 251
(LIRS B o 101 o] o 1= I PR OPPRRPRRPPN 251
(LT I o o1 ¢= 1 1T PR OPPRRPRRRPN 251
16.10 B oT0 10 1 { (RO TTPPPPPPRR 251
16.11 o [T oTcT gl [T o] PP PPPTTPPPPPPRR 252
16.12 o [11T) SR 252
16.13 =Y 0 0])0 SRR 252
HL7 Standard: Clinical Quality Language Specification, Release 1 Page xxi

© 2014-2017 Health Level Seven International. All rights reserved

1614 LENASWILN() 1evorveeveeereeeeeeeeeeeeeeeeeees e seees e seees e eeseees e es s e s ee e ee s es e ee s ees e es s eeseees e eeseees e 252

16.15)] €] (PRSP 252
16.16 IESE() 1ot 252
16.17 1 PP P PSPPSR 252
16.18 ANAEXOF() ettt 252
16.19 S PP PP R PP RPN 252
16.20 B IS)1 Lo () T RS TOU P OPRP 252
16.21 BB 1 () T OO RR PR 252
16.22 BBz 1 ([T (=3 @ {) T RSO POPRTR 253
16.23 113V 1 1 TSRS 253
16.24 ANAECNES() .ttt ettt b e e e b b e e e b e e e e s breeeeaa 253
16.25 o i3] o= (SRR 253
16.26 0] (I PP PR TR PP PR PPRPPPP 253
16.27 8 00 T PR TPPRPPPPRR 253
16.28 =T o= [PSP UPPPPUPRI 253
16.29 =T o] = Lot PSP TURPRRPRI 253
16.30 TEPIACEMAICNES() .eei it e et ee e 253
16.31 1YL= (U RP PSPPSR 253
16.32 ST | T PO UPPPPPPPPPPRR 254
16.33 =] o SR STS 254
16.34 STAMSWWITN() et 254
16.35 ST o111 (O TSSO 254
16.36 =10 o] 14 o T T PP PP PUPPPRPPPRI 254
16.37 10 01T 1= (O TP PRPPPP 254
16.38 =11 TP PSP PU T PP PP PPPPPPPN 254
16.39 BKE() e 254
16.40 AOBOOIEAN() .ttt et a e e e 254
16.41 B (o] B =1 (- 0 1= TP PPTPPP 254
16.42 B (oL F= 1Y/ I O POU U U PP PP RPN 254
16.43 B (o] = Tox1 4o F- [TP PPTTPPPPPPRR 255
16.44 B (o] 0] (Yo =T o TP UTPPPPPPRI 255
16.45 BOSIIING () ettt rre e e e 255
16.46 8 (o 0T SO 255
16.47 1= T TP TPPPPPPRI 255
16.48 BT o= = SO 255
HL7 Standard: Clinical Quality Language Specification, Release 1 Page xxii

© 2014-2017 Health Level Seven International. All rights reserved

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xxiii
© 2014-2017 Health Level Seven International. All rights reserved

1 INTRODUCTION

The Clinical Quality Language Specification defines a representation for the expression of
clinical knowledge that can be used within both the Clinical Decision Support (CDS) and
Clinical Quality Measurement (CQM) domains. Although several standards exist for the
expression of clinical quality logic, these standards are not widely adopted and present various
barriers to point-to-point sharing of clinical knowledge artifacts such as lack of tooling,
complexity of implementation, or insufficient expressivity.

Rather than attempt to address these shortcomings in one of the existing standards, this
specification provides a solution to enable shared understanding of clinical knowledge by
defining a syntax-independent, canonical representation of logic that can be used to express the
knowledge in any given artifact, and point-to-point sharing by defining a serialization for that
representation.

The canonical representation, the Expression Logical Model (ELM), is informed conceptually by
the requirements of the clinical quality domains of measurement and improvement, and
technically by compiler design best practices. The resulting canonical representation provides a
basis for sharing logic in a way that is at once verifiable, computable, and can serve as the input
to language processing applications such as translation, tooling, or even execution engines.

In addition, this specification introduces a high-level, domain-specific language, Clinical Quality
Language (CQL), focused on clinical quality and targeted at measure and decision support
artifact authors. This high-level syntax can then be rendered in the canonical representation
provided by ELM.

1.1 Background

Clinical Decision Support and Clinical Quality Measurement are closely related, share many
common requirements, and both support improving healthcare quality. However, the standards
used for the electronic representation of CDS and CQM artifacts have not been developed in
consideration of each other, and the domains use different approaches to the representation of
patient data and computable expression logic. The first step in enabling a harmonization of these
approaches is clearly identifying the various components involved in the specification of quality
artifacts, and then establishing as a principle the notion that they should be treated independently.
Broadly, the components of an artifact involve specifying:

e Metadata — Information about the artifact such as its identifier and version, what health
topics it covers, supporting evidence, related artifacts, etc.

¢ Clinical Quality Information — The structure and content of the clinical data involved in
the artifact

e Expression Logic — The actual knowledge and reasoning being communicated by the
artifact

Considering each of these components separately, the next step involves identifying the
relationship of the current specifications to each component, as shown in the following table:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 24
© 2014-2017 Health Level Seven International. All rights reserved

Computable

Quality .
Model Type Information Expres_smn Metadata
Logic
Clinical Physical and Virtual Medical CDS Knowledge @ CDS Knowledge
Decision logical Record (VMR) Artifact Artifact
Support (CDS) Specification Specification/Decision
Support Service
Electronic Physical Quality Reporting | Health Quality Health Quality
Clinical Quality Document Measure Format | Measure Format
Measurement Architecture (HQMF) (HQMF)
(eCQM) (QRDA)
Logical Quality Data Quality Data
Model (QDM) Model (QDM)
TABLE 1-A

The discrepancy shown here between standards used in the different domains introduces burdens
on both vendors and providers in electronic healthcare quality domains, including:

e Inability to share logic between CDS and CQM artifacts, even though large portions of
the logic involved represent the same conceptual knowledge

e Duplicated effort in the interpretation, integration, and execution of CDS and CQM
artifacts

e Duplicated effort in the mapping of clinical information from vendor and provider
systems to the different CDS and CQM artifacts

Using the framework of metadata, data model, and expression logic, the following diagram
depicts the overall target specification areas involved in clinical quality artifact representation:

Common
—- Metagata
Standard

T

Common y
CQM Speaific) A CDS Specfic
Standards e Standards

A

Common
Expression

Standard

—

FIGURE 1-A
Following this overall structure, this specification focuses on the common representation of
expression logic that CQM and CDS-specific artifact standards can then reference. Separate

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 25
© 2014-2017 Health Level Seven International. All rights reserved

specifications address metadata and data model. Note, however, that the QUICK specification,
and the Quality Improvement Core (QICore) Profiles are being developed concurrently with this
specification to ensure that the two specifications interoperate effectively.

In addition, this specification is designed to be data model independent, meaning that CQL and
ELM have no explicit dependencies on any aspect of any particular data model. Rather, the
specification allows for any data model to be used, so long as a suitable description of that data
model is supplied. Chapter 7 of this specification discusses how that description is supplied, and
what facilities an implementation must support in order to enable complete data model
independence of CQL and ELM.

1.2 Clinical Quality Framework Initiative

The S&I Framework is an approach adopted by ONC's Office of Standards & Interoperability to
fulfill its charge of enabling harmonized interoperability specifications to support national health
outcomes and healthcare priorities. The S&I Framework is a collaborative community of
participants from the public and private sectors who are focused on providing the tools, services,
and guidance to facilitate the functional exchange of health information. More information about
the S&I Framework can be found here: http://siframework.org/

The S&I Framework uses a set of integrated functions, processes, and tools that enable execution
of specific value-creating initiatives. Each S&I initiative focuses on a single, narrowly scoped,
broadly applicable challenge.

The Clinical Quality Framework (CQF) is an S&I initiative focused on identifying, defining, and
harmonizing standards and specifications that promote integration and reuse between Clinical
Decision Support (CDS) and Clinical Quality Measurement (CQM). Additional information
about the CQF initiative, including a project charter, can be found here:
http://wiki.siframework.org/Clinical+Quality+Framework+Charter+and+Members

Stakeholder input and subject matter expert (SME) guidance has led to the development of
several CQF use cases defining the functional aspects of clinical quality measurement and
improvement. These use cases are described in detail here:
http://wiki.siframework.org/Clinical+Quality+Framework+Use+Cases

1.3 Approach

As discussed in Section 1.1, one key principle underlying the current harmonization efforts is the
separation of responsibilities within an artifact into metadata, clinical information, and
expression logic. Focusing on the expression logic component and identifying the requirements
common to both quality measurement and decision support, the Clinical Decision Support HL7
Work Group produced a harmonized conceptual requirements document: HL7 Domain Analysis
Model: Harmonization of Health Quality Artifact Reasoning and Expression Logic. These
requirements form the basis for the reasoning capabilities that this specification provides.

Building on those conceptual requirements, this specification defines the logical and physical
layers necessary to achieve the goal of a unified specification for expression logic for use by both
the clinical quality and decision support domains.

Broadly, this specification can be viewed from three perspectives:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 26
© 2014-2017 Health Level Seven International. All rights reserved

http://siframework.org/
http://wiki.siframework.org/Clinical+Quality+Framework+Charter+and+Members
http://wiki.siframework.org/Clinical+Quality+Framework+Use+Cases

e Author — The author perspective is concerned with clearly and correctly communicating
and interpreting the semantics defined at the conceptual level, from a human perspective.

e Logical — The logical perspective is concerned with representing the semantics of
expressions in the simplest complete way.

e Physical — The physical perspective is concerned with clearly and correctly
communicating or interpreting the semantics defined at the logical level, from a machine
perspective.

In other words, the logical level of the specification can be thought of as a complete bi-
directional mapping between the author and physical levels. The various components involved in
the specification are then concerned with ensuring that semantics can be clearly communicated
through each of these levels.

1.3.1 Author Perspective

At the highest level, the author perspective is concerned with the human-readable description of
clinical quality logic. This level is represented within this specification as a high-level syntax
called Clinical Quality Language (CQL). CQL is a domain-specific language for clinical quality
and is intended to be usable by clinical domain experts to both author and read clinical
knowledge.

The author perspective is informed conceptually by the Quality Data Model (QDM), the current
conceptual representation of electronic clinical quality measures. This heritage is intended to
provide familiarity and continuity for authors coming from the quality space.

1.3.2 Logical Perspective

The logical perspective of the specification is concerned with complete and accurate
representation of the semantics involved in the expression of quality logic, independent of the
syntax in which that logic is rendered.

For the logical layer, this specification defines a Unified Modeling Language (UML) model
called the Expression Logical Model (ELM) that defines a canonical representation of expression
logic. This approach is intended to simplify implementation and machine processing by focusing
on the content of an expression, rather than the syntax used to render it. The approach is based on
and motivated by the concept of an Abstract Syntax Tree from traditional compiler
implementation. The following diagram depicts the steps performed by a traditional compiler:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 27
© 2014-2017 Health Level Seven International. All rights reserved

CQL is defined at

Xry'z this level

x/(\

Anavars | HEMEEG]

Conceptual Level

Semantic
Analysis

Compiling/
Translation

FIGURE 1-B
As shown here, the ELM representation is defined as an Abstract Syntax Tree, eliminating the
need for lexical analysis and parsing steps, and allowing implementations to concentrate on the
core representation of the logic.

In addition, this approach avoids potential ambiguity that must be resolved with operator
precedence and/or the use of parentheses in traditional expression languages.

The result is a dramatic reduction in the complexity of processing quality artifacts, whether that
processing involves translation to another format, evaluation of the logic, or building a user-
interface for authoring or visual representation of the artifact.

The logical perspective is informed conceptually by the HL7 Version 3 Standard: Clinical
Decision Support Knowledge Artifact Specification, Release 1.2 (CDS KAS), a prior version of a
standard for the representation of clinical decision support artifacts. This heritage is intended to
provide familiarity and continuity for authors and consumers in the decision support space. The
current version of that standard, Release 1.3, has been updated to use the ELM as defined in this
specification.

1.3.3 Physical Perspective

The physical perspective is concerned with the implementation and communication aspects of the
logical model—specifically, with how the canonical representation of expression logic is shared
between producers and consumers. This specification defines an XML schema representation of

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 28
© 2014-2017 Health Level Seven International. All rights reserved

the ELM for this purpose, describes the intended semantics of CQL, and discusses various
implementation approaches.

1.4 Audience

The audience for this specification includes stakeholders and interested parties from a broad
range of health quality applications, including health IT vendors, quality agencies, quality artifact
authors and consumers, and any party interested in producing or consuming health quality
artifacts.

The specification is written with the following major roles in mind:

Role Description

Author A clinical domain expert or clinical artifact author intending to use the Clinical
Quality Language specification to author or understand quality artifacts

Developer A developer interested in building more complex clinical quality artifacts as well as
shared libraries for use by authors

Integrator A health IT professional interested in integrating quality artifacts based on the
Clinical Quality Language specification into a health quality system

Implementer A systems analyst, architect, or developer interested in building language
processing applications for artifacts based on the Clinical Quality Language
specification, such as translators, interpreters, tooling, etc.

TABLE 1-B

Note that even the material in Chapter 2 is somewhat technical in nature, and that Authors will
benefit from some familiarity with and/or training in basic computer language and database
language topics.

In general, each of these roles will benefit from focusing on different aspects of the specification.
In particular, the Author role will be primarily interested in Chapter 2, the Language Guide for
the high-level CQL syntax; the Developer role will be primarily interested in Chapters 2 & 3; the
Integrator role will be primarily interested in Chapter 4, the formal description of the logical
model; and the Implementer role will be primarily interested in Chapters 5, 6, and 7, which
discuss the intended execution semantics, translation semantics, and physical representation,
respectively.

1.5 Scope of the Specification
The Clinical Quality Language specification includes the following components:

e CQL Grammar — An ANTLR4 grammar file formally defining the syntax for the high-
level authoring language described by this specification

e Expression Logical Model — A UML model that specifies a canonical representation for
expression logic

e ELM XML Schemas — XML schemata defining a physical representation for the
serialization and sharing of expression logic specified in the ELM

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 29
© 2014-2017 Health Level Seven International. All rights reserved

Note that syntax highlighting is used throughout the specification to make the examples easier to
read. However, the highlighting is for example use only and is not intended to be a normative
aspect of the specification.

1.6 Alignment to CQF Artifact Sharing Use Case

The specific requirements implemented within this specification focus on the structure,
semantics, and encoding of expression logic representation within quality artifacts. These
requirements are directly tied to the Clinical Quality Framework Artifact Sharing Use Case. Full
material on this Use Case can be found here:

https://oncprojectracking.healthit.gov/wiki/display/TechLabSC/CQF+Use+Cases+-+Discovery

In particular, this specification enables the sharing use case by defining a high-level syntax
suitable for authors, a logical-level representation suitable for language processing applications,
and a mechanism for translation between them. The following diagram depicts how these
specifications will be used in the sharing use case:

Authors use COL to produce

Clinical Quality Language (CQL) libraries containing human-

readable yet precise logic.

ELM XML documents contain
. . machine-friendly rendering
Expression Logical Model (ELM) of the CQL logic. This is the
intended mechanism for
distribution of libraries.

Implementation
environments will either

= directly execute the ELM, or
Natlve DrOOIS perform translation from
ELM to their target
environment language.

FIGURE 1-C

1.6.1 Use Case Assumptions and Conditions

It is important for implementers to clearly understand the underlying environmental assumptions,
defined in Section 5 of the CQF Use Case document referenced in the previous section, to ensure
that these assumptions align to the implementation environment in which content will be
exchanged using a knowledge artifact. Failure to meet any of these assumptions could impact
implementation of the knowledge artifact.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 30
© 2014-2017 Health Level Seven International. All rights reserved

https://oncprojectracking.healthit.gov/wiki/display/TechLabSC/CQF+Use+Cases+-+Discovery

1.7 Relationship to Other HL7 Specifications

The Clinical Quality Language specification is designed as a general purpose query language
suitable for describing clinical knowledge in a broad range of applications. As such, it has
relationships to, and can be used by, several other HL7 specifications, as explained in the sections
that follow.

1.7.1 Health Quality Measure Format (HQMF)

Health Quality Measure Format is an HL7 V3 Standard for the representation of electronic
Clinical Quality Measures (e¢CQMs). HQMF uses a conceptual model of clinical information
called Quality Data Model (QDM) to represent patient information in population criteria for the
measure. QDM originally (and through version 4.3) also included an expression language for use
in eCQMs. Clinical Quality Language is capable of providing more precise and flexible
semantics and HQMF-based eCQMs are in the process of transitioning to use Clinical Quality
Language.

1.7.2 Clinical Decision Support Knowledge Artifact Specification (KAS)

The Knowledge Artifact Specification is an HL7 Standard for the representation of clinical
decision support artifacts such as order sets, documentation templates, and event-condition-action
rules. The original version (and through release 1.2) of that specification included an XML-based
syntax for encoding the logic involved in the knowledge artifacts. The Expression Logical Model
defined by this specification is a derivative of that XML-based syntax, and in release 1.3 of KAS,
the syntax was updated to reference this specification.

1.7.3 Fast Healthcare Interoperability Resources (FHIR)

FHIR is an HL7 standard for enabling healthcare interoperability by defining a framework for
reliable data exchange. The Clinical Reasoning Module of FHIR describes how Clinical Quality
Language can be used within FHIR to represent the logic involved in knowledge artifacts.

1.7.4 FHIRPath

FHIRPath is an HL7 specification for a path-based navigation and extraction language, somewhat
like XPath. CQL is a superset of FHIRPath, meaning that any valid FHIRPath expression is also
a valid CQL expression. This allows CQL to easily express path navigation in hierarchical data
models. For more information, see the Using FHIRPath topic in the Developer’s Guide.

1.8 Organization of this Specification

The organization of this specification follows the outline of the perspectives discussed in the
Approach section—conceptual, logical, and physical. Below is a listing of the chapters with a
short summary of the content of each.

Chapter 1 — Introduction provides introductory and background material for the specification.

Chapter 2 — Author’s Guide provides a high-level discussion of the Clinical Quality Language
syntax. This discussion is a self-contained introduction to the language targeted at clinical quality
authors.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 31
© 2014-2017 Health Level Seven International. All rights reserved

Chapter 3 — Developer’s Guide provides a more in-depth look at the Clinical Quality Language
targeted at developers familiar with typical development languages such as Java, C#, and SQL.

Chapter 4 — Logical Specification provides a complete description of the elements that can be
used to represent quality logic. Note that Chapters 2 and 3 describe the same functional
capabilities of the language, and that anything that can be expressed in one mechanism can be
equivalently expressed in the other.

Chapter 5 — Language Semantics describes the intended semantics of the language, covering
topics such as data layer integration and expected run-time behavior.

Chapter 6 — Translation Semantics describes the mapping between CQL and ELM, as well as
outlines for how to perform translation from CQL to ELM, and vice versa.

Chapter 7 — Physical Representation is reference documentation for the XML schema used to
persist ELM.

Appendix A — CQL Syntax Formal Specification discusses the ANTLR4 grammar for the
Clinical Quality Language.

Appendix B — CQL Reference provides a complete reference for the types and operators
available in CQL, and is intended to be used by authors and developers alike.

Appendix C — Reference Implementations provides information about where to find reference
implementations for a CQL-ELM translator, a CQL Execution Framework for JavaScript, and
other related tooling.

Appendix D — References

Appendix E — Acronyms

Appendix F — Glossary

Appendix G — Formatting Conventions

Appendix H — Timing Interval Calculation Examples

Appendix [— FHIRPath Function Translation

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 32
© 2014-2017 Health Level Seven International. All rights reserved

2 AUTHOR’S GUIDE

This chapter introduces the high-level syntax for the Clinical Quality Language focused on
measure and decision support authors. This syntax provides a human-readable, yet precise
mechanism for expressing logic in both the measurement and improvement domains of clinical
quality.

The syntax, or structure, of CQL is built from several basic elements called fokens. These tokens
are symbols, such as + and *, keywords, such as define and from, literals, such as 5 and 'active’,
and identifiers, such as Person and "Inpatient Encounters".

Statements of CQL are built up by combining these basic elements, separated by whitespace
(spaces, tabs, and returns), to produce language elements. The most basic of these language
elements is an expression, which is any statement of CQL that returns a value.

Expressions are built by combining terms, such as literals and identifiers, using operators, either
symbolic operators, such as + and -, operator phrases such as and and exists, or named operators
called functions, such as First() and AgeInYears().

At the highest level, CQL is organized around the concept of a library, which can be thought of
as a container for artifact logic. Libraries contain declarations which specify the items the library
contains. The most important of these declarations is the named expression, which is the basic
unit of logic definition in CQL.

In the sections that follow, the various constructs introduced above will be discussed in more
detail, beginning with the kinds of declarations that can be made in a CQL library, and then
moving through the various ways that clinical information is referenced and queried within CQL,
an overview of the operators available in CQL, and ending with a detailed walkthrough of
authoring specific quality artifacts using a running example.

Note that throughout the discussion, readers may wish to refer to Appendix B — CQL Reference
for more detailed discussion of particular concepts.

2.1 Declarations

All the constructs that can be expressed within CQL are packaged in a container called a library.
Libraries provide a convenient unit for the definition, versioning, and distribution of logic. For
simplicity, libraries in CQL correspond directly with a single file.

Libraries in CQL provide the overall packaging for CQL definitions. Each library allows a set of
declarations to provide information about the library as well as to define constructs that will be
available within the library.

Libraries can contain any or all of the following constructs:

Construct Description
library Header information for the library, including the name and version, if any.
using Data model information, specifying that the library may access types from the
referenced data model.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 33
© 2014-2017 Health Level Seven International. All rights reserved

include Referenced library information, specifying that the library may access constructs
defined in the referenced library.

codesystem Codesystem information, specifying that logic within the library may reference the
specified codesystem by the given name.

valueset Valueset information, specifying that logic within the library may reference the
specified valueset by the given name.

code Code information, specifying that logic within the library may reference the
specified code by the given name.

concept Concept information, specifying that logic within the library may reference the
specified concept by the given name.

parameter Parameter information, specifying that the library expects parameters to be
supplied by the evaluating environment.

context Patient/population context, specifying the overall context for the statements that
follow.

define The basic unit of logic within a library, a define statement introduces a named

expression that can be referenced within the library, or by other libraries.

function Libraries may also contain function definitions. These are most often used as part
of shared libraries.

TABLE 2-A

The following sections discuss these constructs in more detail.

2.1.1 Library

The library declaration specifies both the name of the library and an optional version for the
library. The library name is used as an identifier to reference the library from other CQL libraries,
as well as eCQM and CDS artifacts. A library can have at most one library declaration.

The following example illustrates the library declaration:

library CMS153_CQM version '2'

The above declaration names the library with the identifier cMs153_cqom and specifies the version
2.
2.1.2 Data Models

A CQL library can reference zero or more data models with using declarations. These data
models define the structures that can be used within retrieve expressions in the library.

For more information on how these data models are used, see the Retrieve section.

The following example illustrates the using declaration:

using QUICK

The above declaration specifies that the QUICK model will be used as the data model within the
library.

If necessary, a version specifier can be provided to indicate which version of the data model
should be used.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 34
© 2014-2017 Health Level Seven International. All rights reserved

2.1.3 Libraries

A CQL library can reference zero or more other CQL libraries with include declarations.
Components defined within these included libraries can then be referenced within the library by
using the locally assigned name for the library.

For more information on libraries, refer to the Using Libraries to Share Logic section.

The following example illustrates an include declaration:

include CMS153_Common version '2' called Common

Components defined in the cMs153_common library, version 2, can now be referenced using the
assigned name of common. For example:

define SexuallyActive:
exists (Common.ConditionsIndicatingSexualActivity)
or exists (Common.LaboratoryTestsIndicatingSexualActivity)

This expression references ConditionsIndicatingSexualActivity and
LaboratoryTestsIndicatingSexualActivity defined in the cMS153_Common library using the local
alias Common.

The syntax used to reference these expressions is a qualified identifier consisting of two parts.
The qualifier, common, and the identifier, ConditionsIndicatingSexualActivity, separated by a dot

()

The called clause of the include declaration is optional, and if omitted, the library is referenced
by the identifier.

2.1.4 Terminology

A CQL library may contain zero or more named valuesets using the valueset declaration. A
valueset declaration specifies a local identifier that represents a valueset and can be used
anywhere within the library that a valueset is expected.

The following example illustrates a valueset declaration:

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2"'

This definition establishes the local identifier "Female Administrative Sex" as a reference to the
external identifier for the valueset, an Object Identifier (OID) in this case:
'2.16.840.1.113883.3.560.100.2"'. The external identifier need not be an OID, it may be a
uniform resource identifier (URI), or any other identification system. CQL does not interpret the
external id, it only specifies that the external identifier be a string that can be used to uniquely
identify the valueset within the implementation environment.

This valueset definition can then be used within the library wherever a valueset can be used:

define InDemographic: Patient.gender in "Female Administrative Sex"

The above examples define the InDemographic expression as true for patients whose Gender is a
code in the valueset identified by "Female Administrative Sex".

Note that the name of the valueset uses double quotes, in contrast to the string representation of
the OID for the valueset, which uses single quotes. Single quotes are used to build arbitrary

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 35
© 2014-2017 Health Level Seven International. All rights reserved

strings in CQL; double quotes are used to represent names of constructs such as valuesets and
expression definitions.

Note also that the local identifier for a valueset is user-defined and not required to match the
actual name of the valueset identified within the external valueset repository. Good practice
would dictate that the names should at least be conceptually similar, but CQL makes no
prescription either way.

In addition, CQL libraries may contain code systems, codes, and concepts. For more information
about terminologies as values within CQL, refer to the Clinical Values section.
2.1.5 Parameters

A CQL library can define zero or more parameters. Each parameter is defined with the elements
listed in the following table:

Element Description
Name A unique identifier for the parameter within the library
Type The type of the parameter — Note that the type is only required if no default value

is provided. Otherwise, the type of the parameter is determined based on the
default value.

Default Value An optional default value for the parameter
TABLE 2-B

The parameters defined in a library may be referenced by name in any expression within the
library. When expressions in a CQL library are evaluated, the values for parameters are provided
by the environment. For example, a library that defines criteria for a quality measure may define
a parameter to represent the measurement period:

parameter MeasurementPeriod
default Interval[@2013-01-01T700:00:00.0, ©@2014-01-01T00:00:00.0)

Note the syntax for the default here is called an interval selector and will be discussed in more
detail in the section on 2.4.5Interval Values.

This parameter definition can now be referenced anywhere within the CQL library:

define InDemographic:
AgeInYearsAt(start of MeasurementPeriod) >= 16
and AgeInYearsAt(start of MeasurementPeriod) < 24

The above example defines the InDemographic expression as patients whose age at the start of the
MeasurementPeriod was at least 16 and less than 24.

The default value for a parameter is optional, but if no default is provided, the parameter must
include a type specifier:

parameter MeasurementPeriod Interval<DateTime>

If a parameter definition does not indicate a default value, the parameter is considered required,
meaning that a value must be supplied by the evaluation environment, typically as part of the
evaluation request.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 36
© 2014-2017 Health Level Seven International. All rights reserved

2.1.6 Context

The context declaration defines the overall context for statements within the language. CQL
supports two contexts:

Context Description
Patient The Patient context specifies that expressions should be
interpreted with reference to a single patient.
Population The Population context specifies that expressions should be
interpreted with reference to the entire population of patients.
TABLE 2-C

The following example illustrates the use of the Patient context:

context Patient

define InDemographic:
AgeInYearsAt(start of MeasurementPeriod) >= 16
and AgeInYearsAt(start of MeasurementPeriod) < 24
and Patient.gender in "Female Administrative Sex"

Because the context has been established as Patient, the expression has access to patient-specific
concepts such as the AgeInyearsAt() operator and the Patient.gender attribute. Note that the
attributes available in the Patient context are defined by the data model in use.

A library may contain zero or more context statements, with each context statement establishing
the context for subsequent statements in the library. When no context is specified, the default
context is Patient.

Effectively, the statement context Patient defines an expression named Patient that returns the
patient data for the current patient, as well as restricts the information that will be returned from a
retrieve to a single patient, as opposed to all patients. For more information on context, refer to
the Retrieve Context discussion below.

2.1.7 Statements

A CQL Library can contain zero or more define statements describing named expressions that
can be referenced either from other expressions within the same library or by containing quality
and decision support artifacts.

The following example illustrates a simple define statement:

define InpatientEncounters:
[Encounter: "Inpatient"] E
where E.length <= 120 days
and E.period ends during MeasurementPeriod

This example defines the InpatientEncounters expression as Encounter events whose code is in
the "Inpatient” valueset, whose length is less than or equal to 120 days, and whose period
ended (i.e. patient was discharged) during MeasurementPeriod.

Note that the use of terms like Encounter, length, and period, as well as which code attribute is
used to compare with the valueset, are defined by the data model being used within the library;
they are not defined by CQL.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 37
© 2014-2017 Health Level Seven International. All rights reserved

For more information on the use of define statements, refer to the Using Define Statements
section.

2.2 Retrieve

The retrieve declaration is the central construct for accessing clinical information within CQL.
The result of a retrieve is always a list of some type of clinical data, based on the type described
by the retrieve and the context (Patient or Population) in which the retrieve is evaluated.

The retrieve in CQL has two main parts: first, the type part, which identifies the type of data that
is to be retrieved; and second, the filter part, which optionally provides filtering information
based on specific types of filters common to most clinical data.

Note that the retrieve only introduces data into an expression; operations for further filtering,
shaping, computation, and sorting will be discussed in later sections.

2.2.1 Clinical Statement Structure

The retrieve expression is a reflection of the idea that clinical data in general can be viewed as
clinical statements of some type as defined by the model. The type of the clinical statement
determines the structure of the data that is returned by the retrieve, as well as the semantics of the
data involved.

The type may be a general category, such as a Condition, Procedure, or Encounter, or a more
specific instance such as an ImagingProcedure, or a LaboratoryTest. The data model defines the
available types that may be referenced by a retrieve.

In the simplest case, a retrieve specifies only the type of data to be retrieved. For example:

[Encounter]

Assuming the default context of Patient, this example retrieves all Encounter statements for a
patient.

2.2.2 Filtering with Terminology

In addition to describing the type of clinical statements, the retrieve expression allows the results
to be filtered using terminology, including valuesets, code systems, or by specifying a single
code. The use of codes within clinical data is ubiquitous, and most clinical statements have at
least one code-valued attribute. In addition, there is typically a “primary” code-valued attribute
for each type of clinical statement. This primary code is used to drive the terminology filter. For
example:

[Condition: "Acute Pharyngitis"]

This example requests only those Conditions whose primary code attribute is a code from the
valueset identified by "Acute Pharyngitis". The attribute used as the primary code attribute is
defined by the data model being used.

In addition, the retrieve expression allows the filtering attribute name to be specified:

[Condition: severity in "Acute Severity"]

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 38
© 2014-2017 Health Level Seven International. All rights reserved

This requests clinical statements that assert the presence of a condition with a severity in the
"Acute Severity" valueset.

Note that the terminology reference "Acute Severity" in the above examples is a valueset, but it
could also be a code system, or a specific code:

[Condition: severity in "Acute"]

Assuming there is a code declaration with the identifier "Acute"”, this example will return
conditions for the patient where the severity is equal to the "Acute" code.

2.2.3 Retrieve Context

Within the Patient context, the results of any given retrieve will always be scoped to a single
patient, as determined by the environment. For example, in a quality measure evaluation
environment, the Patient context may be the current patient being considered. In a clinical
decision support environment, the Patient context would be the patient for which guidance is
being sought.

By contrast, within the Population context, the results of any given retrieve will not be limited to
a single Patient. For example:

[Condition: "Acute Pharyngitis"] C where C.onsetDateTime during MeasurementPeriod

When evaluated within the Patient context, the above example returns "Acute Pharyngitis"
conditions that onset during MeasurementPeriod for the current patient only. In the Population
context, this example returns "Acute Pharyngitis" conditions that onset during MeasurementPeriod
for all patients.

Because context is associated with each declaration, it is possible for expressions defined in the
Patient context to reference expressions defined in the Population context and vice versa.

In a Population context, a reference to a Patient context expression results in the execution of that
expression for each patient in the population, and the implementation environment combines the
results.

If the result type of the Patient context expression is not a list, the result of accessing it from a
Population context will be a list with elements of the type of the Patient context expression. For
example:

context Patient

define InInitialPopulation:
AgeInYearsAt(@2013-01-01) >= 16 and AgelnYearsAt(@2013-01-01) < 24

context Population

define PopulationCount:
Count(InInitialPopulation)

In the above example, the PopulationCount expression returns the number of patients for which
the InInitialPopulation expression evaluated to true.

If the result type of the Patient context expression is a list, the result will be a list of the same
type, but with the results of the evaluation for each patient in the population combined into a
single list.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 39
© 2014-2017 Health Level Seven International. All rights reserved

In a Patient context, a reference to a Population context expression results in the evaluation of the
Population context expression, and the result type is unaffected.

2.3 Queries

Beyond the retrieve expression, CQL provides a query construct that allows the results of
retrieves to be further filtered, shaped, and extended to enable the expression of arbitrary clinical
logic that can be used in quality and decision support artifacts.

Although similar to a retrieve in that a query will typically result in a list of patient information, a
query is a more general construct than a retrieve. Retrieves are by design restricted to a particular
set of criteria that are commonly used when referencing clinical information, and specifically
constructed to allow implementations to easily build data access layers suitable for use with
CQL. For more information on the design of the retrieve construct, refer to Clinical Data
Retrieval in Quality Artifacts.

The query construct has a primary source and four main clauses that each allow for different
types of operations to be performed:

Clause Operation

Relationship (with/without) Allows relationships between the primary source and other
clinical information to be used to filter the result.

Where The where clause allows conditions to be expressed that filter
the result to only the information that meets the condition.

Return The return clause allows the result set to be shaped as needed,
removing elements, or including new calculated values.

Sort The sort clause allows the result set to be ordered according to
any criteria as needed.

TABLE 2-D

Each of these clauses will be discussed in more detail in the following sections.

A query construct begins by introducing an alias for the primary source:

[Encounter: "Inpatient"] E

The primary source for this query is [Encounter: "Inpatient"], and the alias is E. Subsequent
clauses in the query must reference elements of this source by using this name.

Note that although the alias in this example is a single-letter abbreviation, E, it could also be a
longer abbreviation:

| [Encounter: "Inpatient"] Enc

2.3.1 Filtering

The where clause allows the results of the query to be filtered by a condition that is evaluated for
each element of the query being filtered. If the condition evaluates to true for the element being
tested, that element is included in the result. Otherwise, the element is excluded from the
resulting list.

For example:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 40
© 2014-2017 Health Level Seven International. All rights reserved

[Encounter: "Inpatient"] E
where duration in days of E.period >= 120

The alias E is used to access the period attribute of each encounter in the primary source. The
filter condition tests whether the duration of that range is at least 120 days.

The condition of a where clause is allowed to contain any arbitrary combination of operations of
CQL, so long as the overall result of the condition is boolean-valued. For example, the following
where clause includes multiple conditions on different attributes of the source:

[CommunicationRequest] C

where C.mode = 'ordered’
and C.sender.role = 'nurse'’
and C.recipient.role = 'doctor'’

and C.indication in "Fever"

Note that because CQL uses three-valued logic, the result of evaluating any given boolean-valued
condition may be unknown (null). For example, if the list of inpatient encounters from the first
example contains some elements whose period attribute is null, the result of the condition for
that element will not be false, but null, indicating that it is not known whether or not the
duration of the encounter was at least 120 days. For the purposes of evaluating a filter, only
elements where the condition evaluates to true are included in the result, effectively treating the
unknown results as false.

2.3.2 Shaping

The return clause of a CQL query allows the results of the query to be shaped. In most cases, the
results of a query will be of the same type as the primary source of the query. However, some
scenarios involve the need to extract only specific elements or to perform computations on the
data involved in each element. The return clause enables this type of query.

For example:

[Encounter: "Inpatient"] E
return Tuple { id: E.identifier, lengthOfStay: duration in days of E.period }

This example returns a list of tuples (structured values), one for each inpatient encounter
performed, where each tuple consists of the id of the encounter as well as a lengthofstay
element, whose value is calculated by taking the duration of the period for the encounter. Tuples
are discussed in detail in later sections.

2.3.3 Sorting

CQL queries can sort results in any order using the sort by clause. For example:

[Encounter: "Inpatient"] E sort by start of period

This example returns inpatient encounters, sorted by period.

Calculated values can also be used to determine the sort, ascending (asc) or descending (desc), as
in:

[Encounter: "Inpatient"] E
return Tuple { id: E.identifier, lengthOfStay: duration in days of E.period }
sort by lengthOfStay desc

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 41
© 2014-2017 Health Level Seven International. All rights reserved

Note that the properties that can be specified within the sort clause are determined by the result
type of the query. In the above example, lengthofstay can be referenced because it is introduced
in the return clause.

If no ascending or descending specifier is provided, the order is ascending.
If no sort clause is provided, the order of the result is undefined and may vary by implementation.

The sort clause may include multiple attributes, each with their own sort order:

[Encounter: "Inpatient"] E sort by start of period desc, identifier asc

Sorting is perfomed in the order in which the attributes are defined in the sort clause, so this
example sorts by period descending, then by identifier ascending.

A query may only contain a single sort clause, and it must always appear last in the query.

When the data being sorted includes nulls, they are sorted first, meaning they will appear at the
beginning of the list when the data is sorted ascending, and at the end of the list when the data is
sorted descending.

2.3.4 Relationships

In addition to filtering by conditions, some scenarios need to be able to filter based on
relationships to other sources. The CQL with and without clauses provide this capability. For
example:

[Encounter: "Ambulatory/ED Visit"] E
with [Condition: "Acute Pharyngitis"] P
such that P.onsetDateTime during E.period
and P.abatementDate after end of E.period

This query returns "Ambulatory/ED Visit" encounters performed where the patient also has a
condition of "Acute Pharyngitis" that overlaps after the period of the encounter.

The without clause returns only those elements from the primary source that do not have a
specific relationship to another source. For example:

[Encounter: "Ambulatory/ED Visit"] E
without [Condition: "Acute Pharyngitis"] P
such that P.onsetDateTime during E.period
and P.abatementDate after end of E.period

This query is the same as the previous example, except that only encounters that do not have
overlapping conditions of "Acute Pharyngitis" are returned. In other words, if the such that
condition evaluates to true (if the Encounter has an overlapping Condition of Acute Pharyngitis
in this case), then that Encounter is not included in the result.

A given query may include any number of with and without clauses in any order, but they must
all come before any where, return, or sort clauses.

Note that the such that condition of with and without clauses need not be based on timing
relationships, it may contain any arbitrary expression, so long as the overall result is boolean-
valued. For example:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 42
© 2014-2017 Health Level Seven International. All rights reserved

[MedicationDispense: "Warfarin"] D
with [MedicationPrescription: "Warfarin"] P
such that P.status = 'active'
and P.identifier = D.authorizingPrescription.identifier

This example retrieves all dispense records for active prescriptions of Warfarin.

When multiple with or without clauses appear in a single query, the result will only include
elements that meet the such that conditions for all the relationship clauses. For example:

MeasurementPeriodEncounters E
with Pharyngitis P
such that Interval[P.onsetDateTime, P.abatementDateTime] includes E.period
or P.onsetDateTime.value in E.period
with Antibiotics A such that A.dateWritten 3 days or less after start of E.period

This example retrieves all the elements returned by the expression
MeasurementPeriodEncounters that have both a related Pharyngitis and Antibiotics result.

2.3.5 Full Query

The clauses described in the previous section must appear in the correct order to specify a valid
CQL query. The general order of clauses is:

primary-source alias
with-or-without-clauses
where-clause
return-clause
sort-clause
A query must contain an aliased primary source, but this is the only required clause.

A query may contain zero or more with or without clauses, but they must all appear before any
where, return, or sort clauses.

A query may contain at most one where clause, and it must appear after any with or without
clauses, and before any return or sort clauses.

A query may contain at most one return clause, and it must appear after any with or without or
where clauses, and before any sort clause.

A query may contain at most one sort clause, and it must be the last clause in the query.

For example:

[Encounter: "Inpatient"] E
with [Condition: "Acute Pharyngitis"] P
such that P.onsetDateTime during E.period
and P.abatementDate after end of E.period
where duration in days of E.period >= 120
return Tuple { id: E.id, lengthOfStay: duration in days of E.period }
sort by lengthOfStay desc

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 43
© 2014-2017 Health Level Seven International. All rights reserved

This query returns all "Inpatient" encounter events that have an overlapping condition of "Acute
Pharyngitis" and a duration of at least 120 days. For each such event, the result will include the

id of the event and the duration in days, and the results will be ordered by that duration
descending.

Note that the query construct in CQL supports other clauses that are not discussed here. For more

information on these, refer to Multi-Source Queries and Non-Retrieve Queries.

2.4 Values

CQL supports several categories of values:

e Simple values, such as strings, numbers, and dates
e Clinical values, such as quantities and valuesets
e Structured values (called tuples), such as Medications, Encounters, and Patients
e Lists, which can contain any number of elements of the same type
e Intervals, which define ranges of ordered values, such as numbers or dates
The result of evaluating any expression in CQL is a value of some type. For example, the

expression s results in the value s of type 1nteger. CQL is a strongly-typed language, meaning
that every value is of some type, and that every operation expects arguments of a particular type.

As a result, any given expression of CQL can be verified as meaningful, at least in terms of the

operations performed. For example, consider the following expression:

6 + 6

The expression involves the addition of values of type 1nteger, and so is a meaningful expression

of CQL. By contrast:

6 + 'active'

This expression involves the addition of a value of type 1nteger, 6, t0 a value of type string,
‘active'. This expression is meaningless since CQL does not define addition for values of type

Integer and String.

However, there are cases where an expression is meaningful, even if the types do not match

exactly. For example, consider the following addition:

6 + 6.0

This expression involves the addition of a value of type integer, and a value of type pecimal.

This is meaningful, but in order to infer the correct result type, the Integer value will be

implicitly converted to a value of type pecimal, and the pecimal addition operator will be used,

resulting in a value of type pecimal.

To ensure there can never be a loss of information, this implicit conversion will only happen

from Integer t0 Decimal, never from pecimal tO Integer.

In the sections that follow, the various categories of values that can be represented in CQL will

be considered in more detail.

HL7 Standard: Clinical Quality Language Specification, Release 1
© 2014-2017 Health Level Seven International. All rights reserved

Page 44

2.4.1 Simple Values
CQL supports several types of simple values:

Value Examples

Boolean tr‘Ue, false

Integer 16, -28

Decimal 100.015

String 'pending', ‘'active', ‘'complete’

DateTime @2014-01-25,
@2014-01-25T14:30:14.559

Time @T12:00:00.0Z
@T14:30:14.559-07:00

TABLE 2-E

2.4.1.1 Boolean

The Boolean type in CQL supports the logical values true and false. These values are most often
encountered as the result of Comparison Operators, and can be combined with other boolean-

valued expressions using Logical Operators.

2.4.1.2 Integer

The Integer type in CQL supports the representation of whole numbers, positive and negative.
CQL supports a full set of Arithmetic Operators for performing computations involving whole

numbers.

In addition, any operation involving Decimals can be used with values of type Integer because

Integer values can always be implicitly converted to Decimal values.

2.4.1.3 Decimal

The Decimal type in CQL supports the representation of real numbers, positive and negative. As
with Integer values, CQL supports a full set of Arithmetic Operators for performing computations

involving real numbers.

2.4.1.4 String
String values within CQL are represented using single-quotes:

|'active'

Note that if the value to be represented contains a single-quote, use a backslash to include it

within the string in CQL:

| 'patient\'s condition is normal’

2.4.1.5 DateTime and Time

CQL supports the representation of both DateTime and Time values.

DateTime values are used to represent an instant along the timeline, known to at least the year
precision, and potentially to the millisecond precision. DateTime values are specified using an at-

symbol (@) followed by an ISO-8601 textual representation of the bateTime value:

HL7 Standard: Clinical Quality Language Specification, Release 1
© 2014-2017 Health Level Seven International. All rights reserved

Page 45

@2014-01-25
@2014-01-25T14:30:14.559

Time values are used to represent a time of day, independent of the date. Time value must be
known to at least the hour precision, and potentially to the millisecond precision. Time values are
specified using at-symbol (@) followed by an ISO-8601 textual representation of the Time value:

@T12:00:00.0Z
@T14:30:14.559-07:00

Note that the Time value literal format is identical to the time value portion of the bateTime literal
format.

For both pateTime and Time values, timezone may be specified as either UTC time (2), or as a
timezone offset. If no timezone is specified, the timezone of the evaluation request timestamp is
used.

FOR MORE INFORMATION ON THE USE OF DATE/TIME VALUES WITHIN CQL, REFER TO THE TABLE 2-J
Date/Time OPERATORS section.

Specifically, because DateTime and Time values may be specified to varying levels of precisions,
operations such as comparison and duration calculation may result in null, rather than the true or
false that would result from the same operation involving fully specified values. For a discussion
of the effect of imprecision on date/time operations, refer to the Comparing Dates and Times
section.

2.4.2 Clinical Values

In addition to simple values, CQL supports some types of values that are specific to the clinical
quality domain. For example, CQL supports codes, concepts, quantities, and valuesets.

2.4.2.1 Quantities
A quantity is a number with an associated unit. For example:

6 'gm/cm3’
80 'mm[Hg]'
3 months

CQL supports the following built-in units for time granularities:

years
months

weeks

days

hours
minutes
seconds
milliseconds

In addition, CQL supports any valid Unified Code for Units of Measure (UCUM) unit code using
the string representation of the UCUM code immediately following the numeric value, as shown
in the first example in this section. UCUM codes can be specified in the case-sensitive (c/s) or
case-insenstive form (c/i).

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 46
© 2014-2017 Health Level Seven International. All rights reserved

For quantities, number can be an integer or decimal. Note however that most operations
involving time-based quantities ignore the decimal portion of a time-based quantity.

For a discussion of the operations available for quantities, see the Quantity Operators section.

2.4.2.2 Code

The use of codes to specify meaning within clinical data is ubiquitous. CQL therefore supports a
top-level construct for dealing with codes using a structure called Code that is consistent with the
way terminologies are typically represented.

The code type has the following elements:

Name Type Description
code String The identifier for the code.
display String A description of the code.
system String The identifier of the code system.
version String The version of the code system.

TABLE 2-F

In addition, CQL provides a Code literal that can be used to reference an existing code from a
specific code system:

Code '66071002' from "SNOMED-CT:2014" display 'Type B viral hepatitis'

The example specifies the code '66071002" from the previously defined "SNOMED-CT:2014"
codesystem, which specifies both the system and version of the resulting code.

Note that the display clause is optional. The above example references the code '66071002' from
the "SNOMED-CT:2014" code system.

2.4.2.3 Concept

Within clinical information, multiple terminologies can often be used to code for the same
concept. As such, CQL defines a top-level construct called concept that allows for multiple codes
to be specified.

The Concept type has the following elements:

Name Type Description
codes List<Code> The list of equivalent codes representing the
concept.
display String A description of the concept.
TABLE 2-G

Note that the semantics of Concept are such that the codes within a given concept should all be
semantically equivalent at the code level, but CQL itself will make no attempt to ensure that is
the case. Concepts should never be used as a surrogate for proper valueset definition.

The following example illustrates the use of a Concept literal:

Concept

{

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 47
© 2014-2017 Health Level Seven International. All rights reserved

Code '66071002' from "SNOMED-CT:2014",
Code 'B18.1"' from "ICD-9-CM:2014"
} display 'Type B viral hepatitis’

This example constructs a Concept with display 'Type B viral hepatitis' and code of
'66071002".

2.4.2.4 Valuesets

As a value, a valueset is simply a list of code values. However, CQL allows valuesets to be used
without reference to the codes involved by declaring valuesets as a special type of value within
the language.

The following example illustrates some typical valueset declarations:

valueset "Acute Pharyngitis": '2.16.840.1.113883.3.464.1003.102.12.1011"
valueset "Acute Tonsillitis": '2.16.840.1.113883.3.464.1003.102.12.1012"
valueset "Ambulatory/ED Visit": '2.16.840.1.113883.3.464.1003.101.12.1061"

Each valueset declaration defines a local identifier that can be used to reference the valueset
within the library, as well as the global identifier for the valueset, typically an object identifier
(OID) or uniform resource identifier (URI).

These valueset identifiers can then be used throughout the library. For example:

define Pharyngitis: [Condition: "Acute Pharyngitis"]

This example defines Pharyngitis as any Condition where the code is in the "Acute Pharyngitis"”
valueset.

Whenever a valueset reference is actually evaluated, the resulting expansion set, or list of codes,
depends on the binding specified by the valueset declaration. By default, all valueset bindings are
dynamic, meaning that the expansion set should be constructed using the most current published
version of the valueset.

However, CQL also allows for static bindings which allow two components to be set:
1. Version — The version of the valueset to be referenced, specified as a string.
2. Code Systems — A list of code systems referenced by the valueset definition.

If the binding specifies a valueset version, then the expansion set must be derived from that
specific version. This does not restrict the code system versions to be used, therefore more than
one expansion set is possible.

If any code systems are specified, they indicate which version of the particular code system
should be used when constructing the expansion set. As with valuesets, if no code system version
is specified, the expansion set should be constructed using the most current published version of
the codesystem. Note that if the external valueset definition explicitly states that a particular
version of a code system should be used, then it is an error if the code system version specified in
the CQL static binding does not match the code system version specified in the external valueset
definition. To create a reliable static binding where only one value set expansion set is possible,
both the value set version AND the code system versions should be specified.

The following example illustrates the use of static binding based only on the version of the
valueset:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 48
© 2014-2017 Health Level Seven International. All rights reserved

|valueset "Diabetes": '2.16.840.1.113883.3.464.1003.103.12.1001"' version '20140501'

The next example illustrates a static binding based on both the version of the valueset, as well as
the versions of the code systems within the valueset:

codesystem "SNOMED-CT:2013-09": '2.16.840.1.113883.6.96"' version '2031-09'

codesystem "ICD-9-CM:2014": '2.16.840.1.113883.6.103' version '2014'

codesystem "ICD-10-CM:2014": '2.16.840.1.113883.6.90' version '2014°'

valueset "Diabetes": '2.16.840.1.113883.3.464.1003.103.12.1001"' version '20140501'
codesystems ("SNOMED-CT:2013-09", "ICD-9-CM:2014", "ICD-10-CM:2014")

See the Terminology Operators section for more information on the use of valuesets within CQL.

2.4.2.5 Codesystems
In addition to their use as part of valueset definitions, codesystem definitions can be referenced
directly within an expression, just like valueset definitions.

See the Terminology Operators section for more information on the use of codesystems within
CQL.

2.4.3 Structured Values (Tuples)

Structured values, or fuples, are values that contain named elements, each having a value of some
type. Clinical information such as a Medication, a Condition, or an Encounter is represented
using tuples.

For example, the following expression retrieves the first Condition with a code in the "Acute
Pharyngitis" valueset for a patient:

define FirstPharyngitis:
First([Condition: "Acute Pharyngitis"] C sort by C.onsetDateTime desc)

The values of the elements of a tuple can be accessed using a dot qualifier (.) followed by the
name of the element:

|define PharyngitisOnSetDateTime: FirstPharyngitis.onsetDateTime

Tuples can also be constructed directly using a tuple selector:

|define Info: Tuple { Name: 'Patrick', DOB: @2014-01-01 }

If the tuple is of a specific type, the name of the type can be used instead of the Tuple keyword:

|define PatientExpression: Patient { Name: 'Patrick', DOB: @2014-01-01 }

If the name of the type is specified, the tuple selector may only contain elements that are defined
on the type, and the expressions for each element must evaluate to a value of the defined type for
the element.

Note that tuples can contain other tuples, as well as lists:

define Info:
Tuple
{
Name: 'Patrick’,
DOB: (@2014-01-01,
Address: Tuple { Linel: '41 Spinning Ave', City: 'Dayton', State: 'OH' },

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 49
© 2014-2017 Health Level Seven International. All rights reserved

Phones: { Tuple { Number: '202-413-1234', Use: 'Home' } }
}

Accordingly, element access can nest as deeply as necessary:

IInfo.Address.City

This accesses the city element of the Address element of Info. Lists can be traversed within
element accessors using the list indexer ([]):

Info.Phones[@].Number

This accesses the Number element of the first element of the Phones list within Info.

In addition, to simplify path traversal for models that make extensive use of list-valued attributes,
the indexer can be omitted:

Info.Phones.Number

The result of this invocation is a list containing the Number elements of all the Phones.

2.4.3.1 Missing Information

Because clinical information is often incomplete, CQL provides a special construct, null, to
represent an unknown or missing value or result. For example, the admission date of an encounter
may not be known. In that case, the result of accessing the admissionDate element of the
Encounter tuple is null.

In order to provide consistent behavior in the presence of missing information, CQL defines null
behavior for all operations. For example, consider the following expression:

define PharyngitisOnSetDateTime: FirstPharyngitis.onsetDateTime

If the onsetDateTime is not present, the result of this expression is null. Furthermore, nulls will in
general propagate, meaning that if the result of FirstPharyngitis is null, the result of accessing
the onsetDateTime element is also null.

For more information on missing information, see the Nullological Operators section.

2.4.4 List Values

CQL supports the representation of lists of any type of value (including other lists), but all the
elements within a given list must be of the same type.

Lists can be constructed directly, as in:

{1,2,3,4,5}

But more commonly, lists of tuples are the result of retrieve expressions. For example:

[Condition: code in "Acute Pharyngitis"]

This expression results in a list of tuples, where each tuple’s elements are determined by the data
model in use.

Lists in CQL use zero-based indexes, meaning that the first element in a list has index 0. For
example, given the list of integers:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 50
© 2014-2017 Health Level Seven International. All rights reserved

{ 6) 7) 8) 9) 16 }

The first element is 6 and has index 0, the second element is 7 and has index 1, and so on.

Note that in general, clinical data may be expected to contain various types of collections such as
sets, bags, lists, and arrays. For simplicity, CQL deals with all collections using the same
collection type, the /ist, and provides operations to enable dealing with different collection types.
For example, a set is a list where each element is unique, and any given list can be converted to a
set using the distinct operator.

For a description of the distinct operator, as well as other operations that can be performed with
lists, refer to the List Operators section.

2.4.5 Interval Values

CQL supports the representation of intervals, or ranges, of values of various types. In particular,
intervals of date/time and ranges of integers and reals.

Intervals in CQL are represented by specifying the low and high points of the interval and
whether the boundary is inclusive (meaning the boundary point is part of the interval) or
exclusive (meaning the boundary point is excluded from the interval). Following standard
mathematics notation, inclusive (closed) boundaries are indicated with square brackets, and
exclusive (open) boundaries are indicated with parentheses. For example:

Interval[3, 5)

This expression results in an interval that contains the integers 3 and 4, but not 5.

Interval[3.0, 5.0)

This expression results in an interval that contains all the real numbers >= 3.0 and < 5.0.

Intervals can be constructed based on any type that supports unique and ordered comparison. For
example:

Interval[@2014-01-01T700:00:00.0, @2015-01-01T00:00:00.0)

This expression results in an interval that begins at midnight on January 1, 2014, and ends just
before midnight on January 1, 2015.

Note that the ending boundary must be greater than or equal to the starting boundary to construct
a valid interval. Attempting to specify an invalid interval will result in a run-time error. For
example:

Interval[1l, -1] // Invalid interval, this will result in an error

It is valid to construct an interval with the same start and end boundary, so long as the boundaries
are inclusive:

Interval[l, 1] // Unit interval containing only the point 1
Interval[l, 1) // Invalid interval, conflicting to say it both includes and excludes 1

Such an interval contains only a single point and can be called a unit interval. For unit intervals,
the operator can be used to extract the single point from the interval.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 51
© 2014-2017 Health Level Seven International. All rights reserved

point from Interval[l, 1] // Results in 1
point from Interval[l, 5] // Invalid extractor, this will result in an error

Attempting to use on a non-unit-interval will result in a run-time error.

2.5 Operations

In addition to retrieving clinical information about a patient or population, the expression of
clinical knowledge artifacts often involves the use of various operations such as comparison,
logical operations such as and and or, computation, and so on. To ensure that the language can
effectively express a broad range of knowledge artifacts, CQL includes a comprehensive set of
operations. In general, these operations are all expressions in that they can be evaluated to return
a value of some type, and the type of that return value can be determined by examining the types
of values and operations involved in the expression.

This means that for each operation, CQL defines the number and type of each input (argument) to
the operation and the type of the result, given the types of each argument.

The following sections define the operations that can be used within CQL, divided into
semantically related categories.
2.5.1 Comparison Operators

The most basic operation in CQL involves comparison of two values. This is accomplished with
the built-in comparison operators:

Operator Name Description
= Equality Returns true if the arguments are the same value
1= Inequality Returns true if the arguments are not the same value
Greater than Returns true if the left argument is greater than the right argument
Less than Returns true if the left argument is less than the right argument
>= Greater than or | Returns true if the left argument is greater than or equal to the right
equal argument
<= Less than or Returns true if the left argument is less than or equal to the right
equal argument
between Returns true if the first argument is greater than or equal to the
second argument, and less than or equal to the third argument
= Equivalent Returns true if the arguments are the same value, or are both
unknown
I~ Inequivalent Returns true if the arguments are not equivalent
TABLE 2-H

In general, the equality and inequality operators can be used on any type of value within CQL,
but both arguments must be the same type. For example, the following equality comparison is
legal, and returns true:

|5=5

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 52
© 2014-2017 Health Level Seven International. All rights reserved

However, the following equality comparison is invalid because numbers and strings cannot be
meaningfully compared:

5 = "completed’ |

For decimal values, equality is defined to ignore trailing zeroes.

For date/time values, equality is defined to account for the possibility that the date/time values
involved are specified to varying levels of precision. For a complete discussion of this behavior,
refer to Comparing Dates and Times.

For structured values, equality returns true if the values being compared are the same type
(meaning they have the same types of elements) and the values for each element are the same
value. For example, the following comparison returns true:

Tuple { id: 'ABC-001', name: 'John Smith' } = Tuple { id: 'ABC-001', name: 'John Smith' } |

For lists, equality returns true if the lists contain the same elements in the same order. For
example, the following lists are equal:

1{1,2,3,4,5}=4{1,2,3,4,5} |

And the following lists are not equal:

1{1,2,3,4,5}!={5,4,3,2,1} |

Note that in the above example, if the second list was sorted ascending prior to the comparison,
the result would be true.

For intervals, equality returns true if the intervals use the same point type and cover the same
range. For example:

[1..5] = [1..6)

This returns true because the intervals cover the same set of points, 1 through 5.

The relative comparison operators (>, >=, <, <=) can be used on types of values that have a
natural ordering such as numbers, strings, and dates.

The between operator is shorthand for comparison of an expression against an upper and lower
bound. For example:

4 between 2 and 8 |

This expression is equivalent to:

|4>=2and4<=8 |

For all the comparison operators, the result type of the operation is Boolean, meaning they may
result in true, false, or null (meaning unknown). In general, if either or both of the values being
compared is null, the result of the comparison is null.

This is true for all the comparison operators except for equivalent (~) and not equivalent (!~).
The equivalent operator is the same as equality, except that it returns true if both of the
arguments are null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 53
© 2014-2017 Health Level Seven International. All rights reserved

2.5.2 Logical Operators

Combining the results of comparisons and other boolean-valued expressions is essential and is
performed in CQL using the following logical operations:

Operator Description
and Logical conjunction
or Logical disjunction
xor Exclusive logical disjunction
not Logical negation
TABLE 2-1

The following examples illustrate some common uses of logical operators:

AgeInYears() >= 18 and AgeInYears() < 24
INRResult > 5 or DischargedOnOverlapTherapy

Note that all these operators are defined using three-valued logic, which is defined specifically to
ensure that certain well-established relationships that hold in standard Boolean (two-valued) logic
also hold. The complete semantics for each operator are described in the Logical Operators
section of Appendix B — CQL Reference.

2.5.3 Arithmetic Operators

The expression of clinical logic often involves numeric computation, and CQL provides a
complete set of arithmetic operations for expressing computational logic. In general, these
operators have the standard semantics for arithmetic operators, with the general caveat that unless
otherwise stated in the documentation for a specific operation, if any argument to an operation is
null, the result is null.

The following table lists the arithmetic operations available in CQL:

Operator Name Description
+ addition Performs numeric addition of its arguments
- subtraction Performs numeric subtraction of its arguments
* multiply Performs numeric multiplication of its arguments
/ divide Performs numeric division of its arguments
div truncated divide | Performs integer division of its arguments
mod modulo Computes the remainder of the integer division of its arguments
Ceiling Returns the first integer greater than or equal to its argument
Floor Returns the first integer less than or equal to its argument
Truncate Returns the integer component of its argument
Abs Returns the absolute value of its argument
- negate Returns the negative value of its argument
Round Returns the nearest numeric value to its argument, optionally
specified to a number of decimal places for rounding

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 54
© 2014-2017 Health Level Seven International. All rights reserved

Ln natural logarithm | Computes the natural logarithm of its argument

Log logarithm Computes the logarithm of its first argument, using the second
argument as the base
Exp exponent Raises e to the power given by its argument
A exponentiation Raises the first argument to the power given by the second
argument
TABLE 2-)

2.5.4 Date/Time Operators

Operations on date and time data are an essential component of expressing clinical knowledge,
and CQL provides a complete set of date/time operators. These operators broadly fall into five

categories:

e Construction — Building or selecting specific date/time values
e Comparison — Comparing date/time values
e Extraction — Extracting specific components from date/time values

e Arithmetic — Performing date/time arithmetic
e Duration — Computing durations between date/time values

2.5.4.1 Constructing Date/Time Values

In addition to the literals described in the DateTime and Time section, the DateTime and Time
operators allow for the construction of specific date/time values based on the values for their

components. For example:

DateTime(2014, 7, 5)

DateTime(2014, 7, 5, 4, 0, 0, 0, -7)

The first example constructs the DateTime July 5, 2014. The second example constructs a
DateTime of July 5, 2014, 04:00:00.0 UTC-07:00 (Mountain Standard Time).

The pateTime operator takes the following arguments:

Name Type Description
Year Integer The year component of the datetime
Month Integer The month component of the datetime
Day Integer The day component of the datetime
Hour Integer The hour component of the datetime
Minute Integer The minute component of the datetime
Second Integer The second component of the datetime
Millisecond Integer The millisecond component of the datetime
Timezone Offset Decimal The timezone offset component of the datetime (in hours)

HL7 Standard: Clinical Quality Language Specification, Release 1

© 2014-2017 Health Level Seven International. All rights reserved

Page 55

TABLE 2-K

At least one component other than timezone offset must be provided, and for any particular
component that is provided, all the components of broader precision must be provided. For
example:

DateTime(2014)

DateTime (2014, 7)

DateTime(2014, 7, 11)
DateTime(null, null, 11) // invalid

The first three expressions above are valid, constructing dates with a specified precision of years,
months, and days, respectively. However, the fourth expression is invalid, because it attempts to
create a date with a day but no year or month component.

The only component that is ever defaulted is the timezone component. If no timezone component
is supplied, the timezone component is defaulted to the timezone of the timestamp associated
with the evaluation request.

The Time operator takes the following arguments:

Name Type Description
Hour Integer The hour component of the datetime
Minute Integer The minute component of the datetime
Second Integer The second component of the datetime
Millisecond Integer The millisecond component of the datetime
Timezone Offset Decimal The timezone offset component of the datetime
TABLE 2-L

As with the DateTime operator, at least the first component must be supplied, and for any
particular component that is provided, all components of broader precision must be provided. If
timezone is not supplied, it will be defaulted to the timezone of the timestamp associated with the
evaluation request.

In addition to the ability to construct specific dates and times using components, CQL supports
three operators for retrieving the current date and time:

Operator Description
Now Returns the date and time of the start timestamp associated with the evaluation
request
Today Returns the date (with no time components) of the start timestamp associated with the
evaluation request
TimeOfDay | Returns the time-of-day of the start timestamp associated with the evaluation request

TABLE 2-M

The current date and time operators are defined based on the timestamp of the evaluation request
for two reasons:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 56
© 2014-2017 Health Level Seven International. All rights reserved

1. The operations will always return the same value during any given evaluation request,
ensuring that the result of an expression containing Now() or Today() will always return
the same result within the same evaluation (determinism).

2. The operations are based on the timestamp associated with the evaluation request,
allowing the evaluation to be performed with the same time zone information as the data
delivered with the evaluation request.

By defining the date construction operators in this way, most clinical logic can safely ignore
timezone information, and the logic will be evaluated with the expected semantics. However, if
timezone information is relevant to a particular calculation, it can still be accessed as a
component of each datetime value.

In addition, all operations on dates and times are defined to take timezone information into
account, ensuring that datetime operations perform correctly and consistently.

In addition to date and time values, CQL supports the construction of time durations using the
name of the precision as the unit for a quantity. For example:

3 months
1 year
5 minutes

Valid time duration units are:

year
years

month

months

week

weeks

day

days

hour

hours

minute
minutes
second
seconds
millisecond
milliseconds

Note that CQL supports both plural and singular duration units to allow for the most natural
expression but that no attempt is made to enforce singular or plural usage.

Note also that the UCUM time-period units can be used when expressing duration quantities.

2.5.4.2 Comparing Dates and Times

CQL supports comparison of date/time values using the expected comparison operators. Note
however, that when date/time values are not specified completely, the result may be null,
depending on whether there is enough information to make an accurate determination. In general,
CQL treats date/time values that are only known to some specific precision as an uncertainty over
the range at the first unspecified precision. For example:

DateTime(2014)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 57
© 2014-2017 Health Level Seven International. All rights reserved

This value can be read as “some date within the year 2014”, because only the year component is
known. Applying these semantics yields the intuitively correct result when comparing date/time
values with varying levels of precision.

| DateTime(2012) < DateTime(2014, 2, 15)

This example returns true because even though the month and day of the first date are unknown,
the year, 2012, is known to be less than the year of the second date, 2014. By contrast:

| DateTime(2015) < DateTime(2014, 2, 15)

The result in this example is false because the year, 2015, is not less than the year of the second
date. And finally:

|DateTime(2014) < DateTime(2014, 2, 15)

The result in this example is null because the first date could be any date within the year 2014, so
it could be less than the second date, but it could be greater.

As with all date/time calculations, comparisons are performed respecting the timezone offset.

Note that when determining equality, these semantics imply that if either date/time has
unspecified components, the result of the comparison will be unknown. However, it is often the
case that comparisons should only be carried to a specific level of precision. To enable this, CQL
provides precision-based versions of the comparison operators:

Operator Precision-based Operator
= same as
before
after
<= same or before
>= same or after
TABLE 2-N

If no precision is specified, these operators are equivalent to the symbolic comparison operators,
implying comparison precision to the millisecond. However, each operator allows a precision
specifier to be used. For example:

DateTime(2014) same year as DateTime(2014, 7, 11)
DateTime (2014, 7) same month as DateTime(2014, 7, 11)
DateTime(2014, 7, 11) same day as DateTime(2014, 7, 11, 14, 0, 0)

Each of these expressions returns true because the date/time values are equal at the specified
level of precision and above. For example, same month as means the same year and the same
month.

Note: To compare a specific component of two dates, use the extraction operators covered in the
next section.

For relative comparisons involving equality, the same as operator is suffixed with before or
after:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 58
© 2014-2017 Health Level Seven International. All rights reserved

DateTime(2015) same year or after DateTime(2014, 7, 11)
DateTime(2014, 4) same month or before DateTime(2014, 7, 11)
DateTime(2014, 7, 15) same day or after DateTime(2014, 7, 11, 14, 0, 0)

Each of these expressions also returns true. And finally, for the relative inequalities (< and >):

DateTime(2015) after year of DateTime(2014, 7, 11)
DateTime (2014, 4) before month of DateTime(2014, 7, 11)
DateTime(2014, 7, 15) after day of DateTime(2014, 7, 11, 14, 0, 0)

Each of these expressions also returns true.

Note that these operators may still return null if the date/time values involved have unspecified
components at or above the specified comparison precision.

2.5.4.3 Extracting Date and Time Components
Given a date/time value, CQL supports extraction of any of the components. For example:

date from X
year from X
minute from X

These examples extract the date from X, the year from X, and the minute from X. The following
table lists the valid extraction components and their resulting types:

Component Description Result
Type
date from X Extracts the date of its argument (with no time components) | DateTime
time from X Extracts the time of its argument Time
year from X Extracts the year component its argument Integer
month from X Extracts the month component of its argument Integer
day from X Extracts the day component of its argument Integer
hour from X Extracts the hour component of its argument Integer
minute from X Extracts the minute component of its argument Integer
second from X Extracts the second component of its argument Integer
millisecond from X | Extracts the millisecond component of its argument Integer
timezone from X Extracts the timezone offset component of its argument Decimal
TABLE 2-0

Note that if X is null, the result is null. If a date/time value does not have a particular component
specified, extracting that component will result in null. Note also that if the timezone component
for a particular date/time value was not provided as part of the constructor, because the value is
defaulted to the timezone of the evaluation request, the result of extracting the timezone
component will be the default timezone, not null.

2.5.4.4 Date/Time Arithmetic

By using quantities of time durations, CQL supports the ability to perform calendar arithmetic
with the expected semantics for durations with variable numbers of days such as months and
years. The arithmetic addition and subtraction symbols (+ and -) are used for this purpose. For
example:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 59
© 2014-2017 Health Level Seven International. All rights reserved

Today() - 1 year

The above expression computes the date one year before today, taking into account variable
length years and months. Any valid time duration can be added to or subtracted from any
datetime value.

Note that as with the numeric arithmetic operators, if either or both arguments are null, the result
of the operation is null.

The operation is performed by converting the time-based quantity to the highest specified
granularity in the date/time value (truncating any resulting decimal portion) and then adding it to
the date/time value. For example, consider the following addition:

DateTime(2014) + 24 months

This example results in the value DateTime(2016) even though the date/time value is not specified
to the level of precision of the time-valued quantity.

Note also that this means that if decimals appear in the time-valued quantities, the fractional
component will be ignored. For example:

| @2016-01-01 - 1.1 years

Will result in the value @2015-01-01, the decimal component is truncated. When this decimal
truncation occurs, run-time implementations should issue a warning. When it’s possible to
determine at compile-time that this truncation will occur, a warning will be issued by the
translator.

2.5.4.5 Computing Durations and Differences

In addition to constructing durations, CQL supports the ability to compute duration and
difference between two datetimes. For duration, the calculation is performed based on the
calendar duration for the precision. For difference, the calculation is performed by counting the
number of boundaries of the specific precision crossed between the two dates.

months between X and Y

This example calculates the number of months between its arguments. For variable length
precisions (months and years), the operation uses the calendar length of the precision to
determine the number of periods.

For example, the following expression returns 2:

months between ©2014-01-01 and @2014-03-01

This is because there are two whole calendar months between the two dates. Fractional months
are not included in the result. This means that this expression also returns 2:

| months between ©2014-01-01 and @2014-03-15

For difference, the calculation is concerned with the number of boundaries crossed:

| difference in months between X and Y

The above example calculates the number of month boundaries crossed between X and Y.

To illustrate the difference between the two calculations, consider the following examples:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 60
© 2014-2017 Health Level Seven International. All rights reserved

duration in months between @©2014-01-31 and @©2014-02-01
difference in months between ©2014-01-31 and @2014-02-01

The first example returns 0 because there is less than one calendar month between the two dates.
The second example, however, returns 1, because a month boundary was crossed between the
two dates.

The following duration units are valid for the duration and difference operators:

years
months

weeks

days

hours
minutes
seconds
milliseconds

If the first argument is after the second, the result will be negative.
For calculations involving weeks, Sunday is considered the first day of the week.

In addition, if either date/time value involved is not specified to the level of precision for the
duration or difference being calculated, the result will be an uncertainty covering the range of
possible values for the duration. Subsequent comparisons using this uncertainty may result in
null rather than true or false. For a detailed discussion of the behavior of uncertainties, refer to
the Uncertainty section.

If either or both arguments are null, the result is null.

For a detailed set of examples of calculating time intervals, please refer to Appendix H - Time
Interval Calculation Examples.

2.5.5 Timing and Interval Operators

Clinical information often contains not only date/time information as timestamps (points in time),
but intervals of time, such as the effective time for an encounter or condition. Moreover, clinical
logic involving this information often requires the ability to relate this temporal information. For
example, a clinical quality measure might look for “patients with an inpatient encounter during
which a condition started”. CQL provides an exhaustive set of operators for describing these
types of temporal relationships between clinical information.

These interval operations can be broadly categorized as follows:

e General — Construction, extraction, and membership operators

e Comparison — Comparison of two intervals

e Timing — Describing the relationship between two intervals using boundaries
e Computation — Using existing intervals to compute new ones

2.5.5.1 Operating on Intervals

General interval operators in CQL provide basic operations for dealing with interval values,
including construction, extraction, and membership.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 61
© 2014-2017 Health Level Seven International. All rights reserved

Interval values can be constructed using the interval selector, as discussed in Interval Values
above.

Membership testing for intervals can be done using the in and contains operators. For example:

Interval[3, 5) contains 4
4 in Interval[3, 5)

These two expressions are equivalent (inverse of each other) and both return true.

The boundary point for an interval can be determined using the start of and end of operators:

start of Interval[3, 5)
end of Interval[3, 5)

The first expression above returns 3, while the second expression returns 4.

To extract a point from an interval, the point from operator is used:

point from Interval[3, 3]
point from Interval[3, 5)

Note that the point from operator may only be used on a unit interval, or an interval containing a
single point. Attempting to extract a point from an interval that is wider than one will result in a
run-time error.

The starting and ending point of an interval may be null, the meaning of which depends on
whether the interval is closed (inclusive) or open (exclusive). If a boundary point is null and the
boundary is exclusive, the boundary is considered unknown and operations involving that point
will return null. For example:

Interval[3, null) contains 5

This expression results in null. However, if the point is null and the interval boundary is
inclusive, the boundary is interpreted as the beginning or ending of the range of the point type.
For example:

Interval[3, null] contains 5

This expression returns true because the null ending boundary is inclusive and is therefore
interpreted as extending to the end of the range of possible values for the point type of the
interval.

For numeric intervals, CQL defines a width operator, which returns the ending boundary minus
the starting boundary, plus one:

width of Interval[3, 5)
width of Interval[3, 5]

The first expression returns 2 (ending boundary of 4, minus the starting boundary of 3, plus 1),
while the second expression returns 3 (ending boundary of 5, minus the starting boundary of 3,
plus 1). In other words, the width operator returns the number of points that are included in the
interval.

For date/time intervals, CQL defines a duration in operator as well as a difference in operator,
both of which are defined in the same way as the date/time duration and difference operators,
respectively. For example:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 62
© 2014-2017 Health Level Seven International. All rights reserved

| duration in days of X

is equivalent to:

| days between start of X and end of X

This returns the number of whole days between the starting and ending dates of the interval x.

2.5.5.2 Comparing Intervals

CQL supports comparison of two interval values using a complete set of operations. The
following table describes these operators with a diagram showing the relationship between two
intervals that is characterized by each operation:

XsameasY X start of X = start of Y
Y same as X Y and end of X = end of ¥
X before Y X end of X < start of Y
Y after X Y
X meets before Y X successor of end of X = start
Y meets after X ' of Y
X meets Y
X overlaps before Y X start of X <=start of Y
Y overlaps after X Y and start of Y <= end of X
X overlaps Y
X begins Y X start of X = start of Y

Y and end of X <= end of ¥
Xincluded in (during) Y X start of X >=start of Y
Y includes X Y and end of X <= end of ¥
XendsY X start of X >=startof Y

Y and end of X = end of Y

TABLE 2-P

Each of these operators returns true if the intervals x and v are in the given relationship to each
other. If either or both arguments are null, the result is null. Otherwise, the result is false.

In addition, CQL allows meets and overlaps to be invoked without the before or after suffix,
indicating that either relationship should return true. In other words, X meets Y is equivalent to X
meets before Y or X meets after Y, and similarly for the overlaps operator.

Note that to use these operators, the intervals must be of the same point type. For example, it is
invalid to compare an interval of date/times with an interval of numbers.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 63
© 2014-2017 Health Level Seven International. All rights reserved

2.5.5.3 Timing Relationships

In addition to the interval comparison operators described above, CQL allows various timing
relationships to be expressed by directly accessing the start and end boundaries of the intervals
involved. For example:

X starts before start Y

This expression returns true if the start of X is before the start of Y.

In addition, timing phrases allow the use of time durations to offset the relationship. For example:

X starts 3 days before start Y

This returns true if the start of X is equal to three days before the start of Y. Timing phrases can
also include less than, more than, or less and or more to determine how the time duration is
interpreted. For example:

X starts 3 days or less before start Y
X starts less than 3 days before start Y
X starts 3 days or more before start Y
X starts more than 3 days before start Y

The first expression returns true if the start of X is within the interval beginning three days
before the start of Y and ending just before the start of Y. The second expression returns true if
the start of Y is within the interval beginning just after three days before the start of Y and ending
just before the start of Y. The third expression returns true if the start of X is three days or more
before the start of Y. And the fourth expression returns true if the start of X is more than three
days before the start of Y.

Timing phrases can also support inclusive comparisons using on or and or on syntax. For
example:

X starts 3 days or less before or on start Y
X starts less than 3 days on or after end Y

The first expression returns true if the start of X is within the interval beginning three days before
the start of Y and ending exactly on the start of Y. The second expression returns true if the start
of X is within the interval beginning exactly on the end of Y and ending less than 3 days after the
end of Y.

Note that on or and or on can be used with both before and after. This flexibility is to allow for
natural phrasing.

Timing phrases also allow the use of within to establish a range for comparison:

X starts within 3 days of start Y

This expression returns true if the start of X is in the interval beginning three days before the
start of Y and ending 3 days after the start of Y.

In addition, if either comparand is a date/time, rather than an interval, it can be used in any of the
timing phrases without the boundary access modifiers:

dateTimeX within 3 days of dateTimeY

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 64
© 2014-2017 Health Level Seven International. All rights reserved

In other words, the timing phrases in general compare two quantities, either of which may be an
date/time interval or date/time point value, and the boundary access modifiers can be added to a
given timing phrase to access the boundary of an interval.

The following table describes the operators that can be used to construct timing phrases:

S yes yes no no y no no
a e
m s
e
a
S
b yes yes yes yes n yes yes
e o]
f
o}
r
e
a yes yes yes yes n yes yes
f o]
t
e
r
w yes yes required no n no no
i o}
t
h
i
n
o]
f
d yes no no no n no no
u o}
r
i
n
g
HL7 Standard: Clinical Quality Language Specification, Release 1 Page 65

© 2014-2017 Health Level Seven International. All rights reserved

no yes no no n no no

noaoaoc —05

TABLE 2-Q
A yes in the Beginning Boundary column indicates that the operator can be preceded by starts or
ends if the left comparand is an interval.

A yes in the Ending Boundary column indicates that the timing phrase can be succeeded by a
start or end if the right comparand is an interval.

A yes in the duration offset column indicates that the timing phrase may include a duration offset.

A yes in the Or Less/OrMore column indicates that the timing phrase may include an or less/or
more modifier.

A yes in the Or Before/Or After column indicates that the timing phrase may include an or
before/or after modifier.

A yes in the Less Than/More Than column indicates that the timing phrase may include a less
than/more than modifier.

And finally, a yes in the Or On/On Or column indicates that the timing phrase may include a on
or/or on modifier.

In addition, to support more natural-language phrasing of timing operations, the keyword occurs
may appear anywhere that starts or ends can appear in the timing phrase. For example:

X occurs within 3 days of start Y

The occurs keyword is both optional and ignored by CQL. It is only provided to enable more
natural phrasing.

2.5.5.4 Computing Intervals

CQL provides several operators that can be used to combine existing intervals into new intervals.
For example:

Interval[1l, 3] union Interval[3, 6]

This expression returns the interval [1, 6]. Note that interval union is only defined if the
arguments overlap or meet.

Interval intersect results in the overlapping portion of two intervals:

Interval[l, 4] intersect Interval[3, 6]

This expression results in the interval [3, 4].

Interval except computes the difference between two intervals. In other words, the result is points
in the left operand that are not in the right operand. For example:

Interval[l, 4] except Interval[3, 6]

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 66
© 2014-2017 Health Level Seven International. All rights reserved

This expression results in the interval [1, 2]. Note that except is only defined for cases that result
in a well-formed interval. For example, if either argument properly includes the other and does
not start or end it, the result of subtracting one interval from the other would be two intervals, and
the result is thus not defined and results in null.

The following diagrams depict the union, intersect, and except operators for intervals:

union intersect except

FIGURE 2-A

2.5.5.5 Date/Time Intervals

Because CQL supports date/time values with varying levels of precision, intervals of date/times
can potentially involve imprecise date/time values. To ensure well-defined intervals and
consistent semantics, date/time intervals are always considered to contain the full set of values
contained by the boundaries of the interval. For example, the following interval expression
contains all the instants of time, to the millisecond precision, beginning at midnight on January
1%, 2014, and ending at midnight on January 1%, 2015:

interval[DateTime(2014, 1, 1, 0, @, 0, ©), DateTime(2015, 1, 1, 0, 0, 0, 9)]

However, if the boundaries of the interval are specified to a lower precision, the interval is
interpreted as beginning at some time within the most specified precision, and ending at some
time within the most specified precision. For example, the following interval expression contains
all the instants of time, to the millisecond precision, beginning sometime in the year 2014, and
ending sometime in the year 2015:

interval[DateTime(2014), DateTime(2015)]

When calculating the duration of the interval, this imprecision will in general result in an
uncertainty, just as it does when calculating the duration between two imprecise date/time values.

In addition, the boundaries may even be specified to different levels of precision. For example,
the following interval expression contains all the instants of time, to the millisecond precision,
beginning sometime in the year 2014, and ending sometime on January 1%, 2015:

interval[DateTime(2014), DateTime(2015, 1, 1)]

2.5.6 List Operators

Clinical information is almost always stored, collected, and presented in terms of lists of
information. As a result, the expression of clinical knowledge almost always involves dealing
with lists of information in some way. The query construct already discussed provides a powerful

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 67
© 2014-2017 Health Level Seven International. All rights reserved

mechanism for dealing with lists, but CQL also provides a comprehensive set of operations for
dealing with lists in other ways. These operations can be broadly categorized into three groups:

e General List Operations — Operations for dealing with lists in general, such as
constructing lists, accessing elements, and determining the number of elements

e Comparisons — Operations for comparing one list to another
e Computation — Operations for constructing new lists based on existing ones

2.5.6.1 Operating on Lists

Although the most common source of lists in CQL is the retrieve expression, lists can also be
constructed directly using the list selector discussed in List Values.

The elements of a list can be accessed using the indexer ([]) operator. For example:

X[e]

This expression accesses the first element of the list x.

If a list contains a single element, the singleton from operator can be used to extract it:

singleton from { 1 }
singleton from { 1, 2, 3 }

Using singleton from on a list with multiple elements will result in a run-time error.

The index of an element e in a list X can be obtained using the Indexof operator. For example:

IndexOf({'a', 'b', 'c¢' }, 'b"'") // returns 1

If the element is not found in the list, Indexof returns -1.

In addition, the number of elements in a list can be determined using the Count operator. For
example:

Count({ 1, 2, 3, 4, 5 1})

This expression returns the value 5.

Membership in lists can be determined using the in operator and its inverse, contains:

{1, 2, 3, 4, 5 } contains 4
4 in {1, 2, 3, 4, 5}

The exists operator can be used to test whether a list contains any elements:

exists ({1, 2, 3, 4, 5})
exists ({ })

The first expression returns true, while the second expression returns false. This is most often
used in queries to determine whether a query returns any results.

The First and Last operators can be used to retrieve the first and last elements of a list. For
example:

First({ 1, 2, 3, 4, 5 })
Last({ 1, 2, 3, 4, 5 })

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 68

© 2014-2017 Health Level Seven International. All rights reserved

First({})
Last({})

In the above examples, the first expression returns 1, and the second expression returns 5. The
last two expressions both return null since there is no first or last element of an empty list. Note
that the First and Last operators refer to the position of an element in the list, not the temporal
relationship between elements. In order to extract the earliest or latest elements of a list, the list
would first need to be sorted appropriately.

In addition, to provide consistent and intuitive semantics when dealing with lists, whenever an
operation needs to determine whether or not a given list contains an element (including list
operations discussed later such as intersect, except, and distinct), CQL uses the notion of
equivalent, rather than pure equality.

2.5.6.2 Comparing Lists

In addition to list equality, already discussed in Comparison Operators, lists can be compared
using the following operators:

Operator Description
X includes Y Returns true if every element in list Y is also in list X, using
equivalence semantics
X properly includes Y Returns true if every element in list Y is also in list X and list X
has more elements than list Y
X included inY Returns true if every element in list X is also in list Y, using
equivalence semantics
X properly included in Y Returns true if every element in list X is also in list Y, and list Y
has more elements than list X
TABLE 2-R
{1, 2, 3, 4, 5 } includes { 5, 2, 3}
{5, 2, 3} included in { 1, 2, 3, 4, 5 }
{1, 2, 3, 4, 5 } includes { 4, 5, 6 }
{4, 5, 6 } included in { 1, 2, 3, 4, 5 }

In the above examples, the first two expressions are true, but the last two expressions are false.

The properly modifier ensures that the lists are not the same list. For example:

3 } includes { 1, 2, 3}

3 } included in { 1, 2, 3 }

3 } properly includes { 1, 2,
3}
3

-
-

-
-

3}
properly included in { 1, 2, 3 }
, 4, 5 } properly includes { 2, 3, 4 }
3, 4, 5}

-

) J

, 4 } properly included in { 1, 2,

P S S SN
NR R R R R
. .

W INNNDNDDN
-

)

In the above examples, the first two expressions are true, but the next two expressions are false,
because although each element is in the other list, the properly requires that one list be strictly
larger than the other, as in the last two expressions.

Note that during is a synonym for included in and can be used anywhere included in is allowed.
The syntax allows for both keywords to enable more natural phrasing of time-based relationships
depending on context.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 69
© 2014-2017 Health Level Seven International. All rights reserved

2.5.6.3 Computing Lists
CQL provides several operators for computing new lists from existing ones.

To eliminate duplicates from a list, use the distinct operator:

| distinct {1, 1, 2, 2, 3, 4, 5}

This example returns:

{1, 2,3, 4,5}

Note that the distinct operator uses the notion of equivalence (~) to detect duplicates. Because
equivalence is defined for all types, this means that distinct can be used on lists with elements
of any type. In particular, duplicates can be eliminated from lists of tuples, and the operation will
use tuple equivalence (i.e. tuples are equal if they have the same type and the same values (or no
value) for each element of the same name).

To combine all the elements from multiple lists, use the union operator:

{1, 2, 3} union {3, 4, 5}

This example returns:

{1, 2,3, 4,5}

Note that duplicates are eliminated in the result of a union.

To compute only the common elements from multiple lists, use the intersect operator:

| {1, 2, 3 } intersect { 3, 4, 5}

This example returns:

{3}

To remove the elements in one list from another list, use the except operator:

|{1,2,3}except{3,4,5}

This example returns:

{1, 2}

The following diagrams depict the union, intersect, and except operators:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 70
© 2014-2017 Health Level Seven International. All rights reserved

union intersect except

FIGURE 2-B
As with the distinct operator, the intersect, and except operators use the equivalent operator to
determine when two elements are the same.

Because lists may contain lists, CQL provides a flatten operation that can flatten lists of lists:

| flatten { {1, 2, 3}, {3,4,5}}

This example returns:

[{1,2,3,3,4,5}

Note that unlike the union operator, duplicate elements are retained in the result.
Note also that flatten only flattens one level, it is not recursive.

Although the examples in this section primarily use lists of integers, these operators work on lists
with elements of any type.

2.5.6.4 Lists of Intervals

Most list operators in CQL operate on lists of any type, but for lists of intervals, CQL supports a
collapse operator that determines the list of unique intervals from a given list of intervals.
Consider the following intervals:

[]
L]

w N =
[]
L]

FIGURE 2-C
If we want to determine the total duration covered by these intervals, we cannot simply use the
distinct operator, because each of these intervals is different. Yet two of them overlap, so they
cover part of the same range. We also can’t simply perform an aggregate union of the intervals
because some of them don’t overlap, so there isn’t a single interval that covers the entire range.

The solution is the collapse operator which returns the set of intervals that completely cover the
ranges covered by the inputs:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 71
© 2014-2017 Health Level Seven International. All rights reserved

2 —

FIGURE 2-D
Now, when we take the sum of the durations of the intervals, we are guaranteed not to overcount
any particular point in the ranges that may have been included in multiple intervals in the original
set.

2.5.7 Aggregate Operators

Summaries and statistical calculations are a critical aspect of being able to represent clinical
knowledge, especially in the quality measurement domain. Thus, CQL includes a comprehensive
set of aggregate operators.

Aggregate operators are defined to work on lists of values. For example, the count operator
works on any list:

|Count([Encounter])

This expression returns the number of Encounter events.

The sum operator, however, works only on lists of numbers:

[sum({ 1, 2, 3, 4, 5 })

This example results in the sum 15. To sum the results of a list of observation values, for
example, a query is used to extract the values to be summed:

| Sum([Observation] R return R.result)

In general, nulls encountered during aggregation are ignored, and with the exception of Count,
AllTrue, and AnyTrue, the result of the invocation of an aggregate on an empty list iS null. Count is
defined to return e for an empty list. A11True is defined to return true for an empty list, and
AnyTrue 1s defined to return false for an empty list.

The following table lists the aggregate operators available in CQL:

Operator Description

Count Returns the number of elements in its argument

Sum Returns the numeric sum of the elements in the list

Min Returns the minimum value of any element in the list

Max Returns the maximum value of any element in the list

Avg Returns the numeric average (mean) of all elements in the list

Median Returns the statistical median of all elements in the list

Mode Returns the most frequently occurring value in the list

StdDev Returns the sample standard deviation (square root of the sample
variance) of the elements in the list

PopStdDev Returns the population standard deviation (square root of the population
variance) of the elements in the list

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 72
© 2014-2017 Health Level Seven International. All rights reserved

Operator Description

Variance Returns the sample variance (average distance of the data elements from
the sample mean, corrected for bias by using N-1 as the denominator in
the mean calculation, rather than N) of the elements in the list

PopVariance Returns the population variance (average distance of the data elements
from the population mean) of the elements in the list
AllTrue Returns true if all the elements in the list are true, false otherwise
AnyTrue Returns true if any of the elements in the list are true, false otherwise
TABLE 2-S

2.5.8 Clinical Operators
CQL supports several operators for use with the various clinical types in the language.

2.5.8.1 Quantity Operators

All quantities in CQL have unit and value components, which can be accessed in the same way as
properties. For example:

define IsTall: height.units = 'm' and height.value > 2

However, because CQL supports operations on quantities directly, this expression could be
simplified to:

define IsTall: height > 2 'm’

This formulation also has the advantage of allowing for the case that the actual value of height is
expressed in inches.

CQL supports the standard comparison operators (= != < <= > >=) and the standard arithmetic
operators (+ - * /) for quantities. In addition, aggregate operators that utilize these basic
comparisons and computations are also supported, such as Min, Max, Sum, etc.

Note that complete support for unit conversion for all valid UCUM units would be ideal, but
practical CQL implementations will likely provide support for a subset of units for commonly
used clinical dimensions. At a minimum, however, a CQL implementation must respect units and
throw an error if it is not capable of normalizing the quantities involved in a given expression to a
common unit.

2.5.8.2 Terminology Operators

In addition to providing first-class valueset and codesystem constructs, CQL provides operators
for retrieving and testing membership in valuesets and codesystems:

valueset "Acute Pharyngitis": '2.16.840.1.113883.3.464.1003.102.12.1011"
define InPharyngitis: SomeCodeValue in "Acute Pharyngitis”

These statements define the InPharyngitis expression as true if the Ccode-valued expression
SomeCodeValue is in the "Acute Pharyngitis" valueset. Note that valueset membership is based
strictly on the definition of equivalence (i.e. two codes are the same if they have the same values
for the code, system, and version elements). CQL explicitly forbids the notion of terminological
equivalence among codes being used in this context.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 73
© 2014-2017 Health Level Seven International. All rights reserved

Note that this operator can be invoked with a code argument of type String, Code, and Concept.
When invoked with a Concept, the result is true if any Code in the Concept is a member of the
given valueset.

A common terminological operation involves determining whether a given concept is implied, or
subsumed by another. This operation is generally referred to as subsumption and although useful,
is deliberately omitted from this specification. The reason for this omission is that subsumption is
generally a very complex operation, with different terminology systems providing different
mechanisms for defining and interpreting such relationships. As a result, specifying how that
occurs is beyond the scope of CQL at this time. This is not to say that a specific library of
subsumption operators could not be provided and broadly adopted and used, only that the CQL
specification does not attempt to dictate the semantics of that operation.

2.5.8.3 Patient Operators

To support determination of patient age consistently throughout quality logic, CQL defines
several age-related operators:

Operator Description

AgelnYearsAt(X) Determines the age of the patient in years as of the date X

AgelnYears() Determines the age of the patient in years as of today.
Equivalent to AgelnYearsAt(Today())

AgelnMonthsAt(X) Determines the age of the patient in months as of the date X

AgelnMonths() Determines the age of the patient in months as of today.
Equivalent to AgelnMonthsAt(Today())

AgelnDaysAt(X) Determines the age of the patient in days as of the date X

AgelnDays() Determines the age of the patient in days as of today.
Equivalent to AgelnDaysAt(Today())

AgelnHoursAt(X) Determines the age of the patient in hours as of the date/time X

AgelnHours() Determines the age of the patient in hours as of now.
Equivalent to AgelnHoursAt(Now())

CalculateAgelnYearsAt(D, X) Determines the age of a person with birthdate D in years as of
the date X

CalculateAgelnYears(D) Determines the age of a person with birthdate D in years as of

today. Equivalent to CalculateAgelnYearsAt(D, Today())

CalculateAgelnMonthsAt(D, X) | Determines the age of a person with birthdate D in months as
of the date X

CalculateAgelnMonths(D) Determines the age of a person with birthdate D in months as
of today. Equivalent to CalculateAgelnMonthsAt(D, Today())

CalculateAgelnDaysAt(D, X) Determines the age of a person with birthdate D in days as of
the date X

CalculateAgelnDays(D) Determines the age of a person with birthdate D in days as of
today. Equivalent to CalculateAgelnDaysAt(D, Today())

CalculateAgelnHoursAt(D, X) Determines the age of a person with birthdate D in hours as of
the datetime X

CalculateAgelnHours(D) Determines the age of a person with birthdate D in hours as of
now. Equivalent to CalculateAgelnHoursAt(D, Now())

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 74
© 2014-2017 Health Level Seven International. All rights reserved

TABLE 2-T
These operators calculate age using calendar duration.

Note that when Age operators are invoked in a Population context, the result is a list of patient
ages, not a single age for the current patient.

2.6 Authoring Artifact Logic

This section provides a walkthrough of the process of developing shareable artifact logic using
CQL. The walkthrough is based on the development of the logic for a simplified Chlamydia
Screening quality measure and its associated decision support rule.

Although the examples in this guide focus on populations of patients, CQL can also be used to
express non-patient-based artifacts such as episode-of-care measures, or organizational measures
such as number of staff in a facility. For examples of these types of measures, see the Examples
included with this specification.

2.6.1 Running Example

The running example for this walkthrough is a simplification of CMS153, version 2, Chlamydia
Screening for Women. The original QDM for this measure was simplified by including only
references to the following QDM data elements:

e Patient characteristics of Birthdate and Sex
e Diagnosis

e Laboratory Test, Order

e Laboratory Test, Result

This results in the following QDM:

o Initial Patient Population =
o AND: "Patient Characteristic Birthdate: birth date" >= 16 year(s) starts before start of
"Measurement Period"
o AND: "Patient Characteristic Birthdate: birth date" < 24 year(s) starts before start of
"Measurement Period"
o AND: "Patient Characteristic Sex: Female"
o AND:
= QOR: "Diagnosis: Other Female Reproductive Conditions" overlaps with
"Measurement Period"
= QOR: "Diagnosis: Genital Herpes" overlaps with "Measurement Period"
= OR: "Diagnosis: Gonococcal Infections and Venereal Diseases" overlaps with
"Measurement Period"
= OR: "Diagnosis: Inflammatory Diseases of Female Reproductive Organs" overlaps
with "Measurement Period"

= OR: " Diagnosis: Chlamydia" overlaps with "Measurement Period"
= OR: "Diagnosis: HIV" overlaps with "Measurement Period"
= OR: "Diagnosis: Syphilis" overlaps with "Measurement Period"
= OR: "Diagnosis: Complications of Pregnancy, Childbirth and the Puerperium"
overlaps with "Measurement Period"
= OR:
= OR: "Laboratory Test, Order: Pregnancy Test"
HL7 Standard: Clinical Quality Language Specification, Release 1 Page 75

© 2014-2017 Health Level Seven International. All rights reserved

= OR: "Laboratory Test, Order: Pap Test"
= OR: "Laboratory Test, Order: Lab Tests During Pregnancy"
= OR: "Laboratory Test, Order: Lab Tests for Sexually Transmitted
Infections"
= during "Measurement Period"
e Denominator =
o AND: "Initial Patient Population"
e Denominator Exclusions =
o None
e Numerator =
o AND: "Laboratory Test, Result: Chlamydia Screening (result)" during "Measurement Period"
e Denominator Exceptions =
o None

Note that these simplifications result in a measure that is not clinically relevant, and the result of
this walkthrough is in no way intended to be used in a production scenario. The walkthrough is
intended only to demonstrate how CQL can be used to construct shareable clinical logic.

As an aside, one of the simplifications made to the QDM presented above is the removal of the
notion of occurrencing. Readers familiar with that concept as defined in QDM should be aware
that CQL by design does not include this notion. CQL queries are expressive enough that the
correlation accomplished by occurrencing in QDM is not required in CQL.

The following table lists the QDM data elements involved and their mappings to the QUICK data
structures:

QDM Data Element QUICK Equivalent
Patient Characteristic Birthdate Patient.birthDate
Patient Characteristic Sex Patient.gender
Diagnosis Condition
Laboratory Test, Order DiagnosticOrder
Laboratory Test, Result DiagnosticReport
TABLE 2-U

Note that the specific mapping to the QUICK data structures is beyond the scope of this
walkthrough; it is only provided here to demonstrate the link back to the original QDM.

Note also that the use of the QDM as a starting point was deliberately chosen to provide
familiarity and is not a general requirement for building CQL. Artifact development could also
begin directly from clinical guidelines expressed in other formats or directly from relevant
clinical domain expertise. Using the QDM provides a familiar way to establish the starting
requirements.

2.6.2 Clinical Quality Measure Logic

For clinical quality measures, the CQL library simply provides a repository for definitions of the
populations involved. CQL is intended to support both CQM and CDS applications, so it does not
contain quality measure specific constructs. Rather, the containing artifact definition, such as an
HQMF document, would reference the appropriate criteria expression by name within the CQL
document.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 76
© 2014-2017 Health Level Seven International. All rights reserved

With that in mind, a CQL library intended to represent the logic for a CQM must expose at least
the population definitions needed for the measure. In this case, we have criteria definitions for:

e Initial Patient Population
e Denominator
e Numerator

Looking at the Initial Patient Population, we have the demographic criteria:

e Patient is at least 16 years old and less than 24 years old at the start of the measurement
period.

e Patient is female.

For the age criteria, CQL defines an AgeInYearsAt operator that returns the age of the patient as of
a given date/time. Using this operator, and assuming a measurement period of the year 2013, we
can express the patient age criteria as:

AgeInYearsAt(@2013-01-01) >= 16 and AgelnYearsAt(@2013-01-01) < 24

In order to use the AgeInYearsAt operator, we must be in the Patient context:

context Patient

In addition, to allow this criteria to be referenced both within the CQL library by other
expressions, as well as potentially externally, we need to assign an identifier:

define InInitialPopulation:
AgeInYearsAt(@2013-01-01) >= 16 and AgelInYearsAt(@2013-01-01) < 24

Because the quality measure is defined over a measurement period, and many, if not all, of the
criteria we build will have some relationship to this measurement period, it is useful to define the
measurement period directly:

define MeasurementPeriod: Interval[
@2013-01-01T00:00:00.0,
@2014-01-01T00:00:00.0

)

This establishes MeasurementPeriod as the interval beginning precisely at midnight on January 1%,
2013, and ending immediately before midnight on January 1%, 2014. We can now use this in the
age criteria:

define InInitialPopulation:
AgeInYearsAt(start of MeasurementPeriod) >= 16
and AgeInYearsAt(start of MeasurementPeriod) < 24

Even more useful would be to define MeasurementPeriod as a parameter that can be provided
when the quality measure is evaluated. This allows us to use the same logic to evaluate the
quality measure for different years. So instead of using a define statement, we have:

parameter MeasurementPeriod default Intervall[
©2013-01-01T00:00:00.0,
©2014-01-01T00:00:00.0

)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 77
© 2014-2017 Health Level Seven International. All rights reserved

The InInitialPopulation expression remains the same, but it now accesses the value of the
parameter instead of the define statement.

Since we are in the Patient context and have access to the attributes of the Patient (as defined by
the data model in use), the gender criteria can be expressed as follows:

Patient.gender in "Female Administrative Sex"

This criteria requires that the gender attribute of a Patient be a code that is in the valueset
identified by "Female Administrative Sex". Of course, this requires the valueset definition:

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2"'

Putting it all together, we now have:

library CMS153_CQM version '2'
using QUICK

parameter MeasurementPeriod default Intervall
©2013-01-01T00:00:00.0,
©2014-01-01T00:00:00.0

)
valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2"
context Patient
define InInitialPopulation:
AgeInYearsAt(start of MeasurementPeriod) >= 16

and AgeInYearsAt(start of MeasurementPeriod) < 24
and Patient.gender in "Female Administrative Sex"

The next step is to capture the rest of the initial population criteria, beginning with this QDM
statement:

"Diagnosis: Other Female Reproductive Conditions" overlaps with "Measurement Period"
This criteria has three main components:

e The type of clinical statement involved

e The valueset involved

e The relationship to the measurement period

Using the mapping to QUICK, the equivalent retrieve in CQL is:

[Condition: "Other Female Reproductive Conditions"] C
where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod

This query retrieves all condition events for the patient with a code in the "other Female
Reproductive Conditions" valueset that overlap the measurement period. Note that in order to use
the overlaps operator, we had to construct an interval from the onsetDateTime and abatementDate
elements. If the model had an interval-valued “effective time” element, we could have used that
directly, rather than having to construct an interval.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 78
© 2014-2017 Health Level Seven International. All rights reserved

The result of the query is a list of conditions. However, this isn’t quite what the QDM statement
is actually saying. In QDM, the statement can be read loosely as “include patients in the initial
patient population that have at least one active diagnosis from the Other Female Reproductive
Conditions valueset.” To express this in CQL, what we really need to ask is whether the
equivalent retrieve above returns any results, which is accomplished with the exists operator:

exists ([Condition: "Other Female Reproductive Conditions"] C
where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)

Incorporating the next QDM statement:
OR: "Diagnosis: Genital Herpes" overlaps with "Measurement Period"

We have:

exists ([Condition: "Other Female Reproductive Conditions"] C

where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
or exists ([Condition: "Genital Herpes"] C

where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)

Which we can repeat for each Diagnosis, Active statement. Note here that even though we are
using the same alias, ¢, for each query, they do not clash because they are only declared within
their respective queries (or scopes).

Next, we get to the Laboratory Test statements:

OR: "Laboratory Test, Order: Pregnancy Test"

OR: "Laboratory Test, Order: Pap Test"

OR: "Laboratory Test, Order: Lab Tests During Pregnancy"

OR: "Laboratory Test, Order: Lab Tests for Sexually Transmitted Infections"
during "Measurement Period"

We use the same approach. The equivalent retrieve for the first criteria is:

exists ([DiagnosticOrder: "Pregnancy Test"] O
where Last(0.event E where E.status = 'completed' sort by E.date).date
during MeasurementPeriod)

This query is retrieving pregnancy tests that were completed within the measurement period.
Because diagnostic orders do not have a top-level completion date, the date must be retrieved
with a nested query on the events associated with the diagnostic orders. The nested query returns
the set of completed events ordered by their completion date, the Last invocation returns the most
recent of those events, and the .date accessor retrieves the value of the date element of that
event.

And finally, translating the rest of the statements allows us to express the entire initial population
as:

define InInitialPopulation:
AgeInYearsAt(start of MeasurementPeriod) >= 16
and AgeInYearsAt(start of MeasurementPeriod) < 24
and Patient.gender in "Female Administrative Sex"
and

(

exists ([Condition: "Other Female Reproductive Conditions"] C

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 79
© 2014-2017 Health Level Seven International. All rights reserved

where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
or exists ([Condition: "Genital Herpes"] C

where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
or exists ([Condition: "Genococcal Infections and Venereal Diseases"] C

where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)

or exists ([DiagnosticOrder: "Pregnancy Test"] O
where Last(0.event E where E.status = 'completed' sort by E.date).date
during MeasurementPeriod)

2.6.3 Using Define Statements

Because CQL allows any number of define statements with any identifiers, we can structure the
logic of the measure to communicate more meaning to readers of the logic. For example, if we
look at the description of the quality measure:

Percentage of women 16-24 years of age who were identified as sexually active and who
had at least one test for chlamydia during the measurement period.

it becomes clear that the intent of the Diagnosis, Active and Laboratory Test, Order QDM criteria
is to attempt to determine whether or not the patient is sexually active. Of course, we’re dealing
with a simplified measure and so much of the nuance of the original measure is lost; the intent
here is not to determine whether this is in fact a good way in practice to determine whether or not
a patient is sexually active, but rather to show how CQL can be used to help communicate
aspects of the meaning of quality logic that would otherwise be lost or obscured.

With this in mind, rather than expressing the entire initial patient population as a single define,
we can break it up into several more understandable and more meaningful expressions:

define InDemographic:
AgeInYearsAt(start of MeasurementPeriod) >= 16
and AgeInYearsAt(start of MeasurementPeriod) < 24
and Patient.gender in "Female Administrative Sex"

define SexuallyActive:
exists ([Condition: "Other Female Reproductive Conditions"] C
where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
or exists ([Condition: "Genital Herpes"] C
where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
or exists ([Condition: "Genococcal Infections and Venereal Diseases"] C
where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)

or exists ([DiagnosticOrder: "Pregnancy Test"] O
where Last(0.event E where E.status = 'completed' sort by E.date).date
during MeasurementPeriod)

define InInitialPopulation:
InDemographic and SexuallyActive

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 80
© 2014-2017 Health Level Seven International. All rights reserved

Restructuring the logic in this way not only simplifies the expressions involved and makes them
more understandable, but it clearly communicates the intent of each group of criteria.

Note that the InInitialPopulation expression is returning a boolean value indicating whether or
not the patient should be included in the initial population.

The next population to define is the denominator, which in our simplified expression of the
measure is the same as the initial population. Because the intent of the CQL library for a quality
measure is only to define the logic involved in defining the populations, it is assumed that the
larger context (such as an HQMF artifact definition) is providing the overall structure, including
the meaning of the various populations involved. As such, each population definition with the
CQL library should include only those aspects that are unique to that population.

For example, the actual criteria for the denominator is that the patient is in the initial patient
population. But because that notion is already implied by the definition of a population measure
(that the denominator is a subset of the initial population), the CQL for the denominator should
simply be:

define InDenominator: true

This approach to defining the criteria is more flexible from the perspective of actually evaluating
a quality measure, but it may be somewhat confusing when looking at the CQL in isolation.

Note that the approach to defining population criteria will actually be established by the CQF-
Based HQMF Implementation Guide. We follow this approach here just for simplicity.

Following this approach then, we express the numerator as:

define InNumerator:
exists ([DiagnosticReport: "Chlamydia Screening"] R
where R.issued during MeasurementPeriod and R.result is not null)

Note that the R.result is not null condition is required because the original QDM statement
involves a test for the presence of an attribute:

"Laboratory Test, Result: Chlamydia Screening (result)" during "Measurement Period"

The (result) syntax indicates that the item should only be included if there is some value present
for the result attribute. The equivalent expression in CQL is the null test.

Finally, putting it all together, we have a complete, albeit simplified, definition of the logic
involved in defining the population criteria for a measure:

library CMS153_CQM version '2'

using QUICK

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2'
éé;ameter MeasurementPeriod default Intervall[

©@2013-01-01700:00:00.0,
@2014-01-01T700:00:00.0

)

context Patient

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 81
© 2014-2017 Health Level Seven International. All rights reserved

define InDemographic:
AgeInYearsAt(start of MeasurementPeriod) >= 16
and AgeInYearsAt(start of MeasurementPeriod) < 24
and Patient.gender in "Female Administrative Sex"

define SexuallyActive:
exists ([Condition: "Other Female Reproductive Conditions"] C
where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
or exists ([Condition: "Genital Herpes"] C
where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
or exists ([Condition: "Genococcal Infections and Venereal Diseases"] C
where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)

or exists ([DiagnosticOrder: "Pregnancy Test"] O
where Last(0.event E where E.status = 'completed').date
during MeasurementPeriod)

define InInitialPopulation:
InDemographic and SexuallyActive

define InDenominator: true

define InNumerator:
exists ([DiagnosticReport: "Chlamydia Screening"] R
where R.issued during MeasurementPeriod and R.result is not null)

2.6.4 Clinical Decision Support Logic

Using the same simplified measure expression as a basis, we will now build a complementary
clinical decision support rule that can provide guidance at the point-of-care. In general, when
choosing what decision support artifacts will be most complementary to a given quality measure,
several factors must be considered including EHR and practitioner workflows, data availability,
the potential impacts of the guidance, and many others.

Though these are all important considerations and should not be ignored, they are beyond the
scope of this document, and for the purposes of this walkthrough, we will assume that a point-of-
care decision support intervention has been selected as the most appropriate artifact.

When building a point-of-care intervention based on a quality measure, several specific factors
must be considered.

First, quality measures typically contain logic designed to identify a specific setting in which a
particular aspect of health quality is to be measured. This usually involves identifying various
types of encounters. By contrast, a point-of-care decision support artifact is typically written to
be evaluated in a specific context, so the criteria around establishing the setting can typically be
ignored. For the simplified measure we are dealing with, the encounter setting criteria were
removed as part of the simplification.

Second, quality measures are designed to measure quality within a specific timeframe, whereas
point-of-care measures don’t necessarily have those same restrictions. For example, the
diagnoses in the current example are restricted to the measurement period. There may be some
clinically relevant limit on the amount of time that should be used to search for diagnoses, but it
does not necessarily align with the measurement period. For the purposes of this walkthrough, we

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 82
© 2014-2017 Health Level Seven International. All rights reserved

will make the simplifying assumption that any past history of the relevant diagnoses is a potential
indicator of sexual activity.

Third, quality measures are written retrospectively, that is, they are always dealing with events
that occurred in the past. By contrast, decision support artifacts usually involve prospective, as
well as retrospective data. As such, different types of clinical events may be involved, such as
planned or proposed events.

Fourth, quality measures, especially proportion measures, typically express the numerator criteria
as a positive result, whereas the complementary logic for a decision support rule would be
looking for the absence of the criteria. For example, the criteria for membership in the numerator
of the measure we are using is that the patient has had a Chlamydia screening within the
measurement period. For the point-of-care intervention, that logic becomes a test for patients that
have not had a Chlamydia screening.

And finally, although present in some quality measures, many do not include criteria to determine
whether or not there is some practitioner- or patient-provided reason for not taking some course
of action. This is often due to the lack of a standardized mechanism for describing this criteria
and is usually handled on a measure-by-measure basis as part of actually evaluating measures.
Regardless of the reason, because a point-of-care intervention has the potential to interrupt a
practitioner workflow, the ability to determine whether or not a course of action being proposed
has already been considered and rejected is critical.

With these factors in mind, and using the CQL for the measure we have already built, deriving a
point-of-care intervention is fairly straightforward.

To begin with, we are using the same data model, QUICK, the same valueset declarations, and
the same context:

library CMS153_CDS version '2'
using QUICK
codesystem "SNOMED": 'http://snomed.info/sct’

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2"'

context Patient

Note that we are not using the MeasurementPeriod parameter. There are other potential uses for
parameters within the point-of-care intervention (for example, to specify a threshold for how far
back to look for a Chlamydia screening), but we are ignoring those aspects for the purposes of
this walkthrough.

For the InDemographic criteria, we are then simply concerned with female patients between the
ages of 16 and 24, so we change the criteria to use the AgeInYears, rather than the AgeInyearsaAt
operator, to determine the patient’s age as of today:

define InDemographic:
AgeInYears() >= 16 and AgeInYears() < 24
and Patient.gender in "Female Administrative Sex"

Similarly for the SexuallyActive criteria, we remove the relationship to the measurement period:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 83
© 2014-2017 Health Level Seven International. All rights reserved

define SexuallyActive:
exists ([Condition: "Other Female Reproductive Conditions"])
or exists ([Condition: "Genital Herpes"])
or exists ([Condition: "Genococcal Infections and Venereal Diseases"])

or exists ([DiagnosticOrder: "Pregnancy Test"])

For the numerator, we need to invert the logic, so that we are looking for patients that have not
had a Chlamydia screening, and rather than the measurement period, we are looking for the test
within the last year:

not exists ([DiagnosticReport: "Chlamydia Screening"] R
where R.issued during Interval[Today() - 1 years, Today()]
and R.result is not null)

In addition, we need a test to ensure that the patient does not have a planned Chlamydia
screening:

not exists ([ProcedureRequest: "Chlamydia Screening"] R
where R.orderedOn same day or after Today())

And to ensure that there is not a reason for not performing a Chlamydia screening:

not exists ([Observation: "Reason for not performing Chlamydia Screening"])

We combine those into a NoScreening criteria:

define NoScreening:
not exists ([DiagnosticReport: "Chlamydia Screening"] R
where R.issued during Interval[Today() - 1 years, Today()]
and R.result is not null)
and not exists ([ProcedureRequest: "Chlamydia Screening"] R
where R.orderedOn same day or after Today())
and
not exists ([Observation: "Reason for not performing Chlamydia Screening"])

And finally, we provide an overall condition that indicates whether or not this intervention should
be triggered:

define NeedScreening: InDemographic and SexuallyActive and NoScreening

Now, this library can be referenced by a CDS knowledge artifact, and the condition can reference
the NeedScreening expression, which loosely reads: the patient needs screening if they are in the
appropriate demographic, have indicators of sexual activity, and do not have screening.

In addition, this library should include the proposal aspect of the intervention. In general, the
overall artifact definition (such as a CDS KAS artifact) would define what actions should be
performed when the condition is satisfied. Portions of that action definition may reference other
expressions within a CQL library, just as the HQMF for a quality measure may reference multiple
expressions within CQL to identify the various populations in the measure. In this case, the
intervention may construct a proposal for a Chlamydia Screening:

define ChlamydiaScreeningRequest: ProcedureRequest {
type: Code '442487003' from "SNOMED-CT"
display ' Screening for Chlamydia trachomatis (procedure)’,
status: 'proposed’

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 84
© 2014-2017 Health Level Seven International. All rights reserved

// values for other elements of the request...

}

The containing artifact would then use this expression as the target of an action, evaluating the
expression if the condition of the decision support rule is met, and returning the result as the
proposal to the calling environment.

2.6.5 Using Libraries to Share Logic

The previous examples of building a quality measure and a decision support artifact have so far
demonstrated the ability to describe the logic involved using the same underlying data model, as
well as the same expression language. Now we can take that one step further and look at the use
of CQL libraries to actually express the artifacts using the same logic, rather than just the same
data model and language.

We start by identifying the aspects that are identical between the two:
1. SexuallyActive criteria, without the timing relationship
2. ChlamydiaScreening test, without the timing relationship

With these in mind, we can create a new library, cMs153_Common, that will contain the common
elements:

library CMS153_Common version '2'
using QUICK

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2"'

context Patient

define ConditionsIndicatingSexualActivity:
[Condition: "Other Female Reproductive Conditions™]
union [Condition: "Genital Herpes"]
union ...

define LaboratoryTestsIndicatingSexualActivity:
[DiagnosticOrder: "Pregnancy Test"]
union [DiagnosticOrder: "Pap"]
union ...

define ResultsPresentForChlamydiaScreening:
[DiagnosticReport: "Chlamydia Screening"] R where R.result is not null

Using this library, we can then rewrite the CQM to reference the common elements from the
library:

library CMS153_CQM version '2'
using QUICK
include CMS153_Common version '2' called Common

parameter MeasurementPeriod default Intervall[

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 85
© 2014-2017 Health Level Seven International. All rights reserved

@2013-01-01T00:00:00.
@2014-01-01T700:00:00.
)

9,
0

context Patient

define InDemographic:
AgeInYearsAt(start of MeasurementPeriod) >= 16
and AgeInYearsAt(start of MeasurementPeriod) < 24
and Patient.gender in Common."Female Administrative Sex"

define SexuallyActive:
exists (Common.ConditionsIndicatingSexualActivity C
where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
or exists (Common.LaboratoryTestsIndicatingSexualActivity R
where R.issued during MeasurementPeriod)

define InInitialPopulation:
InDemographic and SexuallyActive

define InDenominator:
true

define InNumerator:
exists (Common.ResultsPresentForChlamydiaScreening S
where S.issued during MeasurementPeriod)

And similarly for the CDS artifact:

library CMS153_CDS version '2'
using QUICK
include CMS153_Common version '2' called Common
valueset "Reason for not performing Chlamydia Screening": 'TBD'
context Patient
define InDemographic:
AgeInYears() >= 16 and AgeInYears() < 24
and Patient.gender in Common."Female Administrative Sex"
define SexuallyActive:
exists (Common.ConditionsIndicatingSexualActivity)
or exists (Common.LaboratoryTestsIndicatingSexualActivity)
define NoScreening:
not exists (Common.ResultsPresentForChlamydiaScreening S
where S.issued during Interval[Today() - 1 years, Today()])
and not exists ([ProcedureRequest: Common."Chlamydia Screening"] R

where R.orderedOn same day or after Today()

define NeedScreening: InDemographic and SexuallyActive and NoScreening

In addition to sharing between quality measures and clinical decision support artifacts, the use of
common libraries will allow the same logic to be shared by multiple quality measures or decision

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 86
© 2014-2017 Health Level Seven International. All rights reserved

support artifacts. For example, a set of artifacts for measurement and improvement of the
treatment of diabetes could all use a common library that provides base definitions for
determining when a patient is part of the population of interest.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 87
© 2014-2017 Health Level Seven International. All rights reserved

3 DEVELOPER’S GUIDE

This chapter complements the Author’s Guide by providing more in-depth discussion of language
elements, semantics, more complex query scenarios, and more advanced topics such as typing
and function definition. Readers are expected to be familiar with the content of the Author’s
Guide in the discussions that follow.

3.1 Lexical Elements

CQL is intended to be an authoring language. As such, the syntax is designed to be intuitive and
clear, both when writing and reading the language. Care has been taken to ensure that the
language contains a simple and clear core set of language elements, and that they all interact in a
consistent and predictable manner.

As with any traditional computer language, CQL uses typical lexical elements such as
whitespace, keywords, symbols, comments, and so on.

CQL defines the following basic lexical elements:

Element Description
Whitespace Whitespace defines the separation between all tokens in the language
Comment Comments are ignored by the language, allowing for descriptive text
Literal Literals allow basic values to be represented within the language
Symbol Symbols such as +, -, *, and /
Keyword Grammar-recognized keywords such as define and where
Identifier User-defined identifiers

TABLE 3-A

Every valid CQL document can be broken down into a set of tokens, each of which is one of
these basic lexical elements. The following sections describe each of these elements in more
detail.

3.1.1 Whitespace

CQL defines tab, space, and return as whitespace, meaning they are only used to separate other
tokens within the language. Any number of whitespace characters can appear, and the language
does not use whitespace for anything other than delimiting tokens.

3.1.2 Comments

CQL defines two styles of comments, single-line, and multi-line. A single-line comment consists
of two forward slashes, followed by any text up to the end of the line:

define Foo: 1 + 1 // This is a single-line comment

To begin a multi-line comment, the typical forward slash-asterisk token is used. The comment is
closed with an asterisk-forward slash, and everything enclosed is ignored:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 88
© 2014-2017 Health Level Seven International. All rights reserved

/*
This is a multi-line comment
Any text enclosed within is ignored

*/

Note that nested multi-line comments are not supported.

3.1.3 Literals

Literals provide for the representation of basic values within CQL. The following types of literals
are supported:

Literal Description
Null The null literal (null)
Boolean The boolean literals (true and false)
Integer Sequences of digits in the range 0..2"32-1
Decimal Sequences of digits with a decimal point, in the range 0.0.. 10428 —10"-8
String Strings of any character enclosed within single-ticks (")
DateTime The at-symbol (@) followed by an ISO-8601 compliant representation of a date/time
Time The at-symbol (@) followed by an ISO-8601 compliant representation of a time
Quantity An integer or decimal literal followed by a datetime precision specifier, or a UCUM unit
specifier
TABLE 3-B
CQL uses standard escape sequences for string literals:
Escape Character
* Single-quote
\" Double-quote
\r Carriage Return
\n Line Feed
\t Tab
\f Form Feed
\\ Backslash
\uXXXX Unicode character, where XXXX is the

hexadecimal representation of the character

3.1.4 Symbols

Symbols provide structure to the grammar and allow symbolic invocation of common operators
such as addition. CQL defines the following symbols:

Symbol Description

Definition operator, typically read as “defined as”

QO Parentheses for delimiting groups, as well as specifying and passing function parameters

[1 Brackets for indexing into lists and strings, as well as delimiting the retrieve expression
{} Braces for delimiting lists, tuples, and function bodies
HL7 Standard: Clinical Quality Language Specification, Release 1 Page 89

© 2014-2017 Health Level Seven International. All rights reserved

<> Angle-brackets for delimiting generic types within type specifiers

Period for qualifiers and accessors

5 Comma for delimiting items in a syntactic list

]
]
A
1]
A

Comparison operators for comparing values

+ - * /0 Arithmetic operators for performing calculations

TABLE 3-C

3.1.5 Keywords

Keywords are words that are recognized by the parser and used to build the various language
constructs. CQL defines the following keywords:

after display maximum second
all distinct meets seconds
and div millisecond start

as duration milliseconds starts
asc during minimum sort
ascending else minute successor
before end minutes such that
between ends mod then

by except month time
called exists months timezone
case false not to

cast flatten null true
Code from occurs Tuple
codesystem function of union
codesystems hour or using
collapse hours or after valueset
Concept if or before version
contains implies or less week
context in or more weeks
convert include overlaps where
date includes parameter when

day included in predecessor width
days intersect private with
default Interval properly within
define Is public without
desc let return xor
descending library same year
difference List singleton years

In general, keywords within CQL are also considered reserved words, meaning that it is illegal to
use them as identifiers. If necessary, identifiers that clash with a reserved word can be double-

quoted.

3.1.6 Identifiers

Identifiers are used to name various elements within the language. There are two types of

identifiers in CQL, simple, and quoted.

A simple identifier is any alphabetical character or an underscore, followed by any number of
alpha-numeric characters or underscores. For example, the following are all valid simple

identifiers:

HL7 Standard: Clinical Quality Language Specification, Release 1
© 2014-2017 Health Level Seven International. All rights reserved

Page 90

Foo
Fool
_Foo
foo
FOO

Note also that these are all unique identifiers. By convention, simple identifiers in CQL should
not begin with underscores, and should be Pascal-cased (meaning the first letter of every word
within the identifier is capitalized), rather than using underscores.

In particular, the use of identifiers that differ only in case should be avoided.

A quoted identifier is any sequence of characters enclosed in double-quotes ("):

"Encounter, Performed"
"Diagnosis, Active"

The use of double-quotes allows identifiers to contain spaces, commas, and other characters that
would not be allowed within simple identifiers. This allows identifiers within CQL to be much

more descriptive and readable.

To specify a quoted-identifier that includes a double-quote ("), use a backslash to escape the

double-quote (\"):

| "Encounter \"Inpatient\""

Note that double-quoted identifiers are still case-sensitive, and as with simple identifiers, the use
of double-quoted identifiers that differ only in case should be avoided. The enclosing quotation

marks are not included in the defined identifier.

CQL escape sequences for strings also work for identifiers:

Escape
X

\"

\r

\n

\t

\f

\\
\UXXXX

3.1.7 Operator Precedence

Character
Single-quote
Double-quote
Carriage Return
Line Feed

Tab

Form Feed
Backslash

Unicode character, where XXXX is the

hexadecimal representation of the character

CQL uses standard in-fix operator notation for expressing computational logic. As a result, CQL
also adopts the expected operator precedence to ensure consistent and predictable behavior of
expressions written using CQL. The following table lists the order of operator precendence in
CQL from highest to lowest:

Category

Operators

Primary

- 10

HL7 Standard: Clinical Quality Language Specification, Release 1
© 2014-2017 Health Level Seven International. All rights reserved

Page 91

Conversion Phrase | convert..to

Unary Arithmetic unary +/-

Extractor start/end/duration/width/successor/predecessor of
component/singleton from

Exponentiation ~

Multiplicative * / div mod

Additive P o

Conditional if..then..else
case..else..end

Unary List distinct collapse flatten

Unary Test is null/true/false

Type Operators is as cast..as

Unary Logical not exists

Between between

precision between
difference in precision between

Comparison <= < > >=

Timing Phrase same as
includes
during
before/after
within

Interval Operators | meets overlaps starts ends

Equality = l=n~n I~

Membership in contains
Conjunction and

Disjunction or xor

Binary List union intersect except

TABLE 3-D

As with any typical computer language, parentheses can always be used to force order-of-
operations if the defined operator precedence results in the incorrect evaluation of a given

expression.

When multiple operators appear in a single category, precedence is determined by the order of

appearance in the expression, left to right.

3.1.8 Case-Sensitivity

To encourage consistency and reduce potential confusion, CQL is a case-sensitive language. This
means that case is considered when matching keywords and identifiers in the language. For

example, the following CQL is invalid:

Define Foo: 1 + 1

The declaration is illegal because the parser will not recognize befine as a keyword.

HL7 Standard: Clinical Quality Language Specification, Release 1
© 2014-2017 Health Level Seven International. All rights reserved

Page 92

3.2 Libraries

Libraries provide the basic unit of code organization for CQL. Each CQL file contains a single
library, and may include any number of libraries by reference, subject to the following
constraints:

o The local identifier for a library must be unique within the artifact.
o Circular library references are not allowed.
o Library references are not transitive.

Because the identifier for a library is just an identifier, it may be either a simple identifier, or a
quoted-identifier, which may actually be a uniform resource identifier (URI), an object identifier
(OID), or any other identifier system. It is up to the implementation and environment what
interpretation, if any, is given to the identifier of a library.

Libraries may also be declared with a specific version. When referencing a library, the reference

may include a version specifier. If the reference includes a version specifier, the library with that
version specifier must be used. If the reference does not include a version specifier, it is up to the
implementation environment to provide the most appropriate version of the referenced library.

It is an error to reference a specific version of a library if the library does not have a version
specifier, or if there is no library with the referenced version.

Note that the library declaration is optional in a CQL document, but if it is omitted, it is not
possible to reference the library from any other CQL library.

Libraries may reference other libraries to any degree of nesting, so long as no circular library
references are introduced, but library references are not transitive. This means that in order to
reference the components declared within a particular library, the library must be explicitly
included. In other words, referencing a library does not automatically include libraries referenced
by that library.

3.2.1 Access Modifiers

Each component of a library may have an access modifier applied, either public or private. If no
access modifier is applied, the component is considered public. Only public components of a
library may be accessed by referencing libraries. Private components can only be accessed within
the library itself.

3.2.2 ldentifier Resolution

For identifiers, if a library name is not provided, the identifier must refer to a locally or system
defined component. If a library name is provided, it must be the local identifier for the library,
and that library must contain the identifier being referenced.

For named expressions, CQL supports forward declarations, so long as the resolution does not
result in a circular definition.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 93
© 2014-2017 Health Level Seven International. All rights reserved

3.2.3 Function Resolution

For functions, if a library name is not provided, the invocation must refer to a locally defined
function, or a CQL system function. Function resolution proceeds by attempting to match the
signature of the invocation, i.e. the number and type of each argument, to a defined signature for
the function. Because the CQL type system supports subtyping, generics, and implicit conversion
and casting, it is possible for an invocation signature to match multiple defined signatures. In
these cases, the least converting signature is chosen, meaning the signature with the fewest
required conversions. If multiple signatures have the same number of required conversions, an
ambiguous resolution error is thrown, and the author must provide an explicit cast or conversion
to resolve the ambiguity.

If a library name is provided, only that library will be searched for a resolution.

As with expressions, CQL supports forward declarations for functions, so long as the reference
does not result in a cycle.

3.3 Data Models

CQL allows any number of data models to be included in a given library, subject to the following
constraints:

e The data model identifier must be unique, both among data models, as well as libraries.

o Data model references are not included from referenced libraries. To reference the data
types in a data model, an appropriate local using declaration must be specified.

As with library references, data model references may include a version specifier. If a version is
specified, then the environment must ensure that the version specifier matches the version of the
data model supplied. If no data model matching the requested version is present, an error is
thrown.

3.3.1 Alternate Data Models

Although the examples in this specification generally use the QUICK model (part of the Clinical
Quality Framework), CQL itself does not require or depend on a specific data model. For
example, the following sample is taken from the CMS146v2 using QDM.cql file in the
Examples section of the specification:

["Encounter, Performed": "Ambulatory/ED Visit"] E
with ["Diagnosis": "Acute Pharyngitis"] P such that
interval[P."start datetime", P."stop datetime")
overlaps after interval[E."start datetime", E."stop datetime")

In this example, QDM is used as the data model. Note the use of quoted attribute identifiers to
allow for the spaces in the names of QDM attributes.

3.3.2 Multiple Data Models

Because CQL allows multiple using declarations, the possibility exists for clashes within retrieve
expressions. For example, a library that used both QUICK and vMR may clash on the name
Encounter. In general, the resolution process for class names within CQL proceeds as follows:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 94
© 2014-2017 Health Level Seven International. All rights reserved

e If the class name has no qualifier, then each model used in the current library is searched
for an exact match.

o If an exact match is found in more than one model, the reference is considered
ambiguous and an error is thrown that the class reference is ambiguous among the
matches found.

o If an exact match is found in only one model, that model and type is used.

If no match is found in any model, an error is thrown that the referenced name
cannot be resolved.

e |f the class name has a qualifier, then the qualifier specifies the model to be searched, and
only that model is used to attempt a resolution.

o If the qualifier specifies the name of a model that cannot be found in the current
library, an error is thrown that the referenced model cannot be found.

o If an exact match is found in the referenced model, that class is used.

o If no exact match is found, an error is thrown that the qualified class name cannot
be resolved.

3.4 Types

CQL is a statically typed language, meaning that it is possible to infer the type of any given
expression, and for any given operator invocation, the type of the arguments must match the
types of the operands. To provide complete support for the type system, CQL supports several
constructs for dealing with types including #ype specifiers, as well as conversion, casting, and
type-testing operators.

CQL uses a single-inheritance type system, meaning that each type is derived from at most one
type. Given a type T and a type T' derived from type T, the following statements are true:

e Thetype T is a supertype of type T
e Thetype T'is a subtype of type T.
e A value of type T' may appear anywhere a value of type T is expected.

3.4.1 System-Defined Types

CQL defines several base types that provide the elements for constructing other types, as well as
for defining the operations available within the language.

The maximal supertype is System.Any. All other types derive from System.Any, meaning that
any value is of some type, and also ultimately of type System.Any.

All the system-defined types derive directly from System.Any. The primitive types and their
ranges are summarized here:

Type Range Step Size
Boolean false..true N/A
Integer -2°31..2"31 -1 1
DateTime @0001-01-01T00:00:00.0..@9999-12-31T23:59:59.999 1 millisecond
HL7 Standard: Clinical Quality Language Specification, Release 1 Page 95

© 2014-2017 Health Level Seven International. All rights reserved

Decimal -10728 — 107-8..10728 — 107-8 101-8
String All strings of length 2431-1 or less. N/A
Time @T00:00:00.0..@T23:59:59.999 1 millisecond

TABLE 3-E

In addition, CQL defines several structured types to facilitate representation and manipulation of
clinical information:

Type Description
Code Represents a clinical terminology code, including the code identifier, system, version,
and display.
Concept Represents a single concept as a list of equivalent Codes.
Quantity Represents a quantity with a dimension, specified in UCUM units.

TABLE 3-F

For more information about these types, refer to the CQL Reference section on Types.

3.4.2 Specifying Types

In various constructs, the type of a value must be specified. For example, when defining the type
of a parameter, or when testing a value to determine whether it is of a specific type. CQL
provides the #ype specifier for this purpose. There are five categories of type-specifiers,

corresponding to the four categories of values supported by CQL, plus a choice type category
that allows for more flexible models and expressions:

Named Types
Tuple Types
Interval Types
List Types

Choice Types

The named type specifier is simply the name of the type. For example:

| parameter Threshold Integer

This example declares a parameter named Threshold of type Integer.

The tuple type specifier allows the names and types of the elements of the type to be specified.

For example:

| parameter Demographics Tuple { address String, city String, zip String }

The interval type specifier allows the point-type of the interval to be specified:

| parameter Range Interval<Integer>

The list type specifier allows the element-type of a list to be specified:

HL7 Standard: Clinical Quality Language Specification, Release 1
© 2014-2017 Health Level Seven International. All rights reserved

Page 96

| parameter Points List<Integer>

And finally, the choice type specifier allows a choice type to be specified:

| parameter ChoiceValue Choice<Integer, String>

3.4.3 Type Testing
CQL supports the ability to test whether or not a value is of a given type. For example:

5 is Integer

returns true because 5 is an Integer.

In general, the is relationship determines whether or not a given type is derived from another
type. Given a type T and a type T' derived from type T, the following definitions hold:

e Identity—TisT
e Subtype-T'isT

Note that because of the identity relationship above, the term subtype applies to all derived types,
as well as the type itself. In the discussions that follow, if a definition must explicitly refer to
only derived types, the term proper subtype will be used.

For interval types, given a point type P, and a point type P' derived from type P, interval type
Interval<P'> is a subtype of interval type Interval<P>,

For list types, given an element type E, and an element type E' derived from type E, list type
List<E'> is a subtype of list type List<E>.

For tuple types, given a tuple type T with elements Es, E», ...En, names N1, N2, ...Nn, and types
T1, T2, ...Th, respectively, a tuple type T' with elements E'1, E'2, ...E'y, names N'1, N'z, ...N'n, and
types T'1, T2, ... T', type T'is a subtype of type T if and only if:

e The number of elements in each type is the same: |E| = |E|

e Foreach element in T, there is one element in T' with the same name, and the type of the
matching element in T' is a subtype of the type of the element in T.

For structured types, the supertype is specified as part of the definition of the type. Subtypes
inherit all the elements of the supertype and may define additional elements that are only present
on the derived type.

3.4.4 Choice Types

CQL also supports the notion of a choice type, a type that is defined by a list of component types.
For example, an element of a tuple type may be a choice of Integer or String, meaning that the
element may contain a value that is either an Integer, or a String.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 97
© 2014-2017 Health Level Seven International. All rights reserved

In addition, choice types can be used to indicate the type of a list of mixed elements, such as the
result of a union:

[Procedure] union [Encounter]

This example results in a list that contains both Procedures and Encounters, and the resulting type
1S Choice<Procedure, Encounter>.

An expression of a choice type can be used anywhere that a value of any of its component types
is expected, and an implicit cast will be used to restrict the choice type to the correct component
type.

For example, given an Observation type with an element value of type Choice<String, Code,
Integer, Decimal, Quantity>, the following expressions are all valid:

Observation.value + 12
Observation.value & ' (observed)'
Observation.value in "Valid Values"
Observation.value < 5 'mg'

These expressions will result in an implicit cast being applied as follows:

(Observation.value as Integer) + 12
(Observation.value as String) & ' (observed)'
(Observation.value as Code) in "Valid Values"
(Observation.value as Quantity) < 5 'mg’

The semantics for casting will result in a null if the run-time value of the element is not of the
appropriate type.

When accessing an element of a choice type with structured types as components, any element
can be accessed. Note, however, that if the element being accessed is present in multiple
components, the resulting expression may be a choice type if the elements have different types.

In addition, the choice type enables the set operations, union, intersect, and except to be
generalized to work on lists of different types.

For union, this means that the inputs can be lists of different types of elements, and the type of the
result is now a choice type with components of each of the input types. If the input types are the
same, the result is a choice with a single component which degenerates to the component type.

For intersect, this means the inputs can be lists of different types of elements, and the type of the
result is a choice with only the types that are common between the input types. Again, if this
results in a choice with a single component, it degenerates to the component type.

For except, this means that the inputs can contain lists of different types of elements, but because
the except may not exclude all the values of a given type, the result will be the same type as the
left input.

3.4.5 Type Inference

Type inference is the process of determining the type of an expression based on the types of the
values and operations involved in the expression. CQL is a strongly typed language, meaning that
it is always possible to infer the type of an expression at compile-time (i.e. by static analysis).

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 98
© 2014-2017 Health Level Seven International. All rights reserved

The type inference rules for the various categories of language constructs are given in the
following sections.

3.4.5.1 Literals and Selectors

The type of a literal is trivial for the primitive types and selectors: Boolean, String, Integer,
Decimal, DateTime, Time, and Quantity.

The type of the null selector is Any.

For a list selector, the type may be specified as part of the selector:

I List<System.Integer> { 1, 2, 3 }

Or it may be inferred based on the types of the elements:

({1, 2,3}

For an empty list, with no specifier, the type is List<Any>.

If the type of a list is specified, the elements in the list are required to be of the declared element
type of the list.

If the type of the list is inferred, the type of the first element is used initially, and subsequent
elements in the list are required to be of the inferred type of the first element, with the exception
that if a subsequent element is a supertype of the initial element, or if the initial element is
convertible to the type of a subsequent element, the type of the subsequent element will become
the new inferred element type for the list.

For a tuple selector, the type is constructed from the elements in the tuple selector.

For an instance selector, the type is determined by the name of the type of the instance being
constructed.

3.4.5.2 Operators and Functions

In general, the result type of an operator or function is determined by the declared return type of
the function. For example, the (Integer, Integer) overload of the Add operator returns an Integer
value, so the type of an Add invocation is Integer:

3+4

The CQL Reference appendix gives the signatures and declared return types for all system
operators.

In addition to special cases for operators such as conditionals and Coalesce, CQL defines implicit
conversion, casting, and promotion and demotion to provide more flexible type checking rules.
These special cases are described in subsequent sections.

3.4.5.3 Queries

For queries, the type inference rules are based on the clauses used, beginning with single-source
queries:

1. For asingle-source query, the initial type of the query is the type of expression defining
the single source. If the expression is singular (i.e. non-list-valued) the query ranges over

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 99
© 2014-2017 Health Level Seven International. All rights reserved

only that element. If the expression is plural, the query ranges over all the elements in the
list.

2. For a multi-source query, the initial type of the query is defined by a tuple where each
tuple has an element for each source in the query, named the alias name of the source, and
of the type of the expression defining the source. If all sources are singular the initial type
of the query is the singular tuple type. If any source is plural, the initial type of the query
is a list of the tuple type.

3. Let clauses only introduce content that can be referenced within the scope of the query,
they do not impact the type of the result unless referenced within a return clause.

4. With and without clauses only limit the set of results returned by a query, they do not
impact the type of the result.

5. A where clause only limits the set of results returned by the query, it does not impact the
type of the result.

6. The return clause determines the overall shape of the query result. If there is no return
clause, the result type of the query is the same as the initial type of the query as
determined based on the sources. If a return clause is used, the result type of the query is
inferred based on the return expression. If the query is singular, the result type is the type
of the return clause expression. If the query is plural, the result type is a list whose
element types are the type of the return expression.

3.4.6 Conversion

Conversion is the operation of turning a value from one type into another. For example,
converting a number to a string, or vice-versa. CQL supports explicit conversion operators, as
well as implicit conversion for some specific types.

3.4.6.1 Explicit Conversion

The explicit convert can be used to convert a value from one type to another. For example, to
convert the string representation of a date/time to a DateTime value:

| convert '2014-01-01T712:00:00.0-06:00' to DateTime

If the conversion cannot be performed, a run-time error will be thrown. For example:

| convert 'Foo' to Integer

will result in an error. The convert syntax is equivalent to invoking one of the defined explicit
conversion operators:

Operator Description
ToBoolean(String) Converts the string representation of a boolean value to a Boolean value
Tolnteger(String) Converts the string representation of an integer value to an Integer value
using the format (+|-)d*
ToDecimal(Integer) Converts an Integer value to an equivalent Decimal value
HL7 Standard: Clinical Quality Language Specification, Release 1 Page 100

© 2014-2017 Health Level Seven International. All rights reserved

ToDecimal(String)

Converts the string representation of a decimal value to a Decimal value
using the format (+|-)d*.d*

ToQuantity(String)

Converts the string representation of a quantity value to a Quantity value
using the format (+|-)d*.d*'units’

ToDateTime(String)

Converts the string representation of a date/time value to a DateTime
value using ISO-8601 format: YYYY-MM-DDThh:mm:ss.fff(+|-)hh:mm

ToTime(String)

Converts the string representation of a time value to a Time value using
1ISO-8601 format: Thh:mm:ss.fff(+|-)hh:mm

ToString(Boolean)

Converts a Boolean value to its string representation (truelfalse)

ToString(Integer)

Converts an Integer value to its string representation

ToString(Decimal)

Converts a Decimal value to its string representation

ToString(Quantity)

Converts a Quantity value to its string representation

ToString(DateTime)

Converts a DateTime value to its string representation

ToString(Time)

Converts a Time value to its string representation

ToConcept(Code) Converts a Code value to a Concept with the given Code as its primary
and only Code. If the Code has a display value, the Concept will have the
same display value.

ToConcept(List<Code>) Converts a list of Code values to a Concept with the first Code in the list

as the primary Code. If the primary Code has a display value, the
Concept will have the same display value.

TABLE 3-G

FOR A COMPLETE DESCRIPTION OF THESE CONVERSION OPERATORS, REFER TO THE TABLE 9-E

Type Operators section in the CQL Reference.

3.4.6.2 Implicit Conversions

In addition to the explicit conversion operators discussed above, CQL supports the implicit
conversions for specific types to enable expressions to be built more easily. The following table
lists the explicit and implicit conversions supported in CQL:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 101
© 2014-2017 Health Level Seven International. All rights reserved

From\To Boolean Integer Decimal Quantity String Datetime Time Code Concept List(;:od
e
Boolean N/A - - - Explicit
Integer - N/A Implicit - Explicit
Decimal - - N/A - Explicit
Quantity - - - N/A Explicit
String Explicit Explicit Explicit Explicit N/A Explicit Explicit
Datetime - - - - Explicit N/A
Time - - - - Explicit - N/A
Code - - - - - - - N/A Implicit
Concept - - - - - - - - N/A Explicit
List(Code) Implicit N/A
TABLE 3-H

Although implicit conversions can be performed using the explicit convert, the language will also
automatically apply implicit conversions when appropriate to produce a correctly typed
expression. For example, consider the following multiplication:

define MixedMultiply: 1 * 1.0

The type of the literal 1 is Integer, and the type of the literal 1.0 is Decimal. To infer the type of
the expression correctly, the language will implicitly convert the type of the 1 to Decimal by
inserting a ToDecimal invocation. The multiplication is then performed on two Decimals, and the
result type is Decimal.

In addition, CQL defines implicit conversion of a named structured type to its equivalent tuple
type. For example, given the type Person with elements Name of type string and DOB of type
DateTime, the following comparison is valid:

define TupleComparison: Person { Name: 'Joe', DOB: @1970-01-01 } = Tuple { Name: 'Joe’',
DOB: @1970-01-01 }

In this case, the structured value will be implicitly converted to the equivalent tuple type, and the
comparison will evaluate to true.

Note that the opposite implicit conversion, from a tuple to a named structured type, does not
occur because a named structured type has additional information (namely the type hierarchy)
that cannot be inferred from the definition of a tuple type. In such cases, an explicit conversion
can be used:

define TupleExpression: Tuple { Name: 'Joe', DOB: @1970-01-01 }
define TupleConvert: convert TupleExpression to Person

The conversion from a tuple to a structured type requires that the set of elements in the tuple type
be the same set or a subset of the elements in the structured type.

3.4.7 Casting

Casting is the operation of treating a value of some base type as a more specific type at run-time.
The as operator provides this functionality. For example, given a model that defines an
ImagingProcedure as a specialization of a Procedure, in the following example:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 102
© 2014-2017 Health Level Seven International. All rights reserved

define AllProcedures: [Procedure]
define ImagingProcedures:
AllProcedures P
where P is ImagingProcedure
return P as ImagingProcedure

the ImagingProcedures expression returns all procedures that are instances of ImagingProcedure as
instances of ImagingProcedure. This means that attributes that are specific to ImagingProcedure
can be accessed.

If the run-time type of the value is not of the type specified in the as operator, the result is null.

In addition, CQL supports a strict cast, which has the same semantics as casting, except that if the
run-time type of the value is not of the type specified, a run-time error is thrown. The keyword
cast 1s used to indicate a strict cast:

define StrictCast: cast First(Procedures) as ImagingProcedure

3.4.7.1 Implicit Casting

CQL also supports the notion of implicit casting to prevent the need to cast a null literal to a
specific type. For example, consider the following expression:

define ImplicitCast: 5 * null

The type of the first argument to the multiplication is Integer, and the type of the second
argument is Any, an untyped null literal. But multipication of Integer and Any is not defined and
Any is a supertype of Integer, not a subtype. This means that with strict typing, this expression
would not compile without the addition of an explicit cast:

define ImplicitCast: 5 * (null as Integer)

To avoid the need for this explicit cast, CQL implicitly casts the Any to Integer.

3.4.8 Promotion and Demotion

To simplify the expression of logic involving lists and intervals, CQL defines promotion and
demotion, which are a special class of implicit conversions.

Promotion is used to implicitly convert a value to a list of values of that type. Whenever an
operation that expects a list-valued argument is passed a single value, the single value is
promoted to a list of the same type containing the single value as its only element.

Demotion is the opposite, used to implicitly extract a single value from a list of values. Whenver
an operation that expects a singleton is passed a list, the list is demoted to a singleton using
singleton from.

For intervals, promotion is performed by creating an interval with the single value as the start and
end of the interval, and demotion is performed using point from.

3.4.9 Conversion Precedence

Because of the possibility that a given invocation signature may be resolved to multiple
overloads of an operator through the application of different conversions, CQL specifies a
conversion precedence for resolving the ambiguity. When matching the invocation type of an

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 103
© 2014-2017 Health Level Seven International. All rights reserved

argument to the declared type of the corresponding argument of an operator, the following
precedence is applied:

1. Exact match — If the invocation type is an exact match to the declared type of the
argument

2. Subtype — If the invocation type is a subtype of the declared type of the argument

3. Compatible — If the invocation type is compatible with the declared type of the argument
(e.g., the invocation type is Any)

4. Implicit Conversion — An implicit conversion is defined from the invocation type of the
argument to the declared type of the argument

5. Demotion — The invocation type of the argument can be demoted to the declared type
6. Promotion — The invocation type of the argument can be promoted to the declared type

These conversion precedences can be viewed as ordered from least converting to most
converting. When determining a conversion path from an invocation signature to a declared
signature, the least converting overall conversion path should be used.

3.5 Conditional Expressions

To simplify the expression of complex logic, CQL provides two flavors of conditional
expressions, the if expression, and the case expression.

The if expression allows a single condition to select between two expressions:

if Count(X) > @ then X[1] else ©

This expression checks the count of x and returns the first element if it is greater than e;
otherwise, the expression returns . Note that if the condition evaluates to null, it is interpreted as
false.

The case expression allows multiple conditions to be tested, and comes in two flavors: standard
case, and selected case.

A standard case allows any number of conditions, each with a corresponding expression that will
be the result of the case if the associated condition evaluates to true. Note that as with the if
expression, if the condition evaluates to null, it is interpreted as false. If none of the conditions
evaluate to true, the else expression is the result:

case
when X > Y then X
when Y > X then Y
else 0

end

A selected case specifies a comparand, and each case item specifies a possible value for the
comparand. If the comparand is equal to a case item, the corresponding expression is the result of
the selected case. If the comparand does not equal any of the case items, the else expression is the
result:

case X
when 1 then 12

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 104
© 2014-2017 Health Level Seven International. All rights reserved

when 2 then 14
else 15
end

Note that if the source expression in a selected case is null, no condition will compare equal and
the result will be the else expression. If any case item is null, it will not compare equal to the
comparand.

3.6 Nullological Operators

To provide complete support for missing information, CQL supports several operators for testing
for and dealing with null results.

To provide a null result, use the null keyword:

|null

To test whether an expression is null, use the null test:

X is null
X is not null

To replace a null with the result of an expression, use a simple if expression:

|if X is null then Y else X

To return the first non-null expression among two or more expressions, use the Coalesce operator:

|Coa1esce(X, Y, Z)

which is equivalent to:

case
when X is not null then X
when Y is not null then Y
else Z

end

In addition, CQL supports the boolean-test operators is [not] true and is [not] false. These
operators, like the null-test operator, only return true and false, they will not propagate a null
result.

X is true
X is not false

The first example will return true if X evaluates to true, false if X evaluates to false or null. The
second example will return true if X evaluates to true or null, false if X evaluates to false. Note
in particular that these operators are not equivalent to comparison of Boolean results using
equality or inequality.

3.7 String Operators

Although less common in typical clinical logic, some use cases require string manipulation. As
such, CQL supports a core set of string operators.

Like lists, strings are 0-based in CQL. To index into a string, use the indexer operator:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 105
© 2014-2017 Health Level Seven International. All rights reserved

| x[e]

To determine the length of string, use the Length operator:

I Length(X)

To determine the position of a given pattern within a string, use the Position0f operator:

PositionOf('cde', 'abcdefg')

The Position0f() operator returns the index of the starting character of the first argument in the
second argument, if the first argument can be located in the second argument. Otherwise,
PositionOf() returns -1 to indicate the pattern was not found in the string. To find the last
appearance of a given pattern, use Position0f(), and to find patterns at the beginning and end of
a string, use StartswWith() and EndswWith(). Regular expression matching can be performed with
the Matches() and ReplaceMatches() operators

To return a substring from a given string, use the Substring operator:

Substring('abcdefg', 0, 3)

This example returns the string 'abc'. The second argument is the starting index of the substring
to be returned, and the third argument is the length of the substring to be returned. If the length is
greater than number of characters present in the string from the starting index on, the result
includes only the remaining characters. If the starting index is less than 0, or greater than the
length of the string, the result is null. The third argument is optional; if it is not provided, the
substring is taken from the starting index to the end of the string.

To concatenate strings, use the + operator:

abc' + 'defg’

Note that when using + with string values, if either argument is null, the result will be null. To
treat null as the empty string (' '), use the & operator:

|'abc' & 'defg’

To combine a list of strings, use the Combine operator:

|Combine({ 'ab', 'cd', 'ef' })

The result of this expression is:

|'abcdef'

To combine a list with a separator, provide the separator argument to the Combine operator:

|Combine({ 'completed', 'refused', 'pending' }, ';")

The result of this expression is:

|'completed;refused;pending'

To split a string into a list of strings based on a specific separator, use the Split operator:

|Split('completed;refused;pending',)

The result of this expression is:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 106
© 2014-2017 Health Level Seven International. All rights reserved

|{ 'completed', 'refused', 'pending' }

Use the upper and Lower operators to return strings with upper or lowercase letters for all
characters in the argument.

3.8 Introducing Context in Queries

The CQL query construct provides for the ability to introduce named expressions that only exist
within the scope of a single query. The lef clause of queries allows any number of definitions to
be provided. Each definition has access to all the available context of the query scope, as well as
the overall library scope. This feature is extremely useful for simplifying query logic by allowing
complex expressions to be defined and then reused within the context of a single query. For
example:

"Medications" M
let ingredients: GetIngredients(M.rxNormCode)
return
ingredients I
let
adjustedDoseQuantity: EnsureMicrogramQuantity(M.doseQuantity),
dailyDose:
GetDailyDose(
I.ingredientCode,
I.strength,
I.doseFormCode,
adjustedDoseQuantity,
M.dosesPerDay
)>
factor: GetConversionFactor(I.ingredientCode, dailyDose, I.doseFormCode)
return {
rxNormCode: M.rxNormCode,
doseFormCode: I.doseFormCode,
doseQuantity: adjustedDoseQuantity,
dosesPerDay: M.dosesPerDay,
ingredientCode: I.ingredientCode,
ingredientName: I.ingredientName,
strength: I.strength,
dailyDose: dailyDose,
mme: Quantity { value: dailyDose.value * factor, unit: dailyDose.unit + '/d' }

}

In this query, the same logic defined by the dailyDose expression can be reused multiple times in
the where clause, avoiding the need to repeat the calculation and making the intended meaning of
the logic much more clear.

Note also the ability to reference a previously defined let in the same scope, as in the use of
adjustedDoseQuantity in the definition of dailyDose.

3.9 Multi-Source Queries

In addition to the single-source queries discussed in the Author’s Guide, CQL provides multi-
source queries to allow for the simple expression of complex relationships between sets of data.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 107
© 2014-2017 Health Level Seven International. All rights reserved

Consider the following excerpt from the numerator of a measure for appropriate warfarin and
parenteral anticoagulation overlap therapy:

e Numerator =
o Patients who received warfarin and parenteral anticoagulation:
= Five or more days, with an INR greater than or equal to 2 prior to discontinuation of
parenteral therapy
= OR: Five or more days, with an INR less than 2 and discharged on overlap therapy
= OR: Less than five days and discharged on overlap therapy

We begin by breaking this down into the source components, Encounters, Warfarin Therapy, and
Parenteral Therapy:

define "Encounters": [Encounter: "Inpatient"] E
where E.period during "Measurement Period"
define "Warfarin Therapy": [MedicationAdministration: "Warfarin"]
define "Parenteral Therapy": [MedicationAdministration: "Parenteral Anticoagulation”]

First, we establish that the encounter had both warfarin and parenteral anticoagulation therapies.
This is easy enough to accomplish using with clauses:

define "Encounters with Warfarin and Parenteral Therapies":
"Encounters" E
with "Warfarin Therapy"” W such that W.effectiveTime starts during E.period
with "Parenteral Therapy" P such that P.effectiveTime starts during E.period

However, the next step involves calculating the duration of overlap between the warfarin and
parenteral therapies, and a with clause only filters by a relationship, it does not introduce any data
from the related source. To allow queries like this to be easily expressed, CQL allows a from
clause to be used to start a query:

define "Encounters with Warfarin and Parenteral Therapies":
from "Encounters" E,
"Warfarin Therapy" W,
"Parenteral Therapy" P
where W.effectiveTime starts during E.period
and P.effectiveTime starts during E.period

We now have both the encounter and the warfarin and parenteral therapies in context and can
perform calculations involving all three:

define "Encounters with overlapping Warfarin and Parenteral Therapies":

from "Encounters" E,
"Warfarin Therapy" W,
"Parenteral Therapy" P

where W.effectiveTime starts during E.period
and P.effectiveTime starts during E.period
and duration in days of (W.effectiveTime intersect P.effectiveTime) >= 5
and Last([Observation: "INR Value"] I

where I.applies during P.effectiveTime sort by I.applies).value >= 2

This gives us the first condition, namely that a patient was on overlapping warfarin and
parenteral therapies for at least 5 days, and the ending INR result associated with the parenteral
therapy is greater than or equal to 2.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 108
© 2014-2017 Health Level Seven International. All rights reserved

Next, we need to build criteria for the other cases, but these cases involve the same calculations,
just compared against different values, or in different ways. Rather than having to restate the
calculations multiple times, CQL allows a let clause to be used to introduce an intermediate
comutational result within a query:

define "Encounters with overlapping Warfarin and Parenteral Therapies":
from "Encounters" E,
"Warfarin Therapy" W,
"Parenteral Therapy" P
let
overlapDuration: duration in days of (W.effectiveTime intersect P.effectiveTime),
endingINR:
Last([Observation: "INR Value"] I
where I.applies during P.effectiveTime sort by I.applies
).value
where W.effectiveTime starts during E.period
and P.effectiveTime starts during E.period
and (
(overlapDuration >= 5 and endingINR >= 2)
or (overlapDuration >= 5 and endingINR < 2
and P.effectiveTime overlaps after E.period)
or (overlapDuration < 5
and P.effectiveTime overlaps after E.period)

)

return E

Because the return clause in a query is optional, the type of the result of multi-source queries
with no return clause is defined as a list of tuples with an element for each source named the alias
for the source within the query and of the type of the elements of the source. For example:

from [Encounter] E, [MedicationStatement] M

The result type of this query is:

List<Tuple { E Encounter, M MedicationStatement }>

The result will be a list of tuples containing the cartesian product of all Encounters and
Medication Statements.

In addition, the default for return clauses is distinct, as opposed to all, so if no return clause is
specified, duplicates will be eliminated from the result.

3.10 Non-Retrieve Queries

In addition to the query examples already discussed, it is possible to use any arbitrary expression
as the source for a query. For example:

({1, 2, 3, 4, 5}) L return L * 2

This query results in { 2, 4, 6, 8, 10 }. Note that the parentheses are required for arbitrary
expressions. A query source is either a retrieve, a qualified identifier, or a parenthesized
expression.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 109
© 2014-2017 Health Level Seven International. All rights reserved

The above example also illustrates that queries need not be based on lists of tuples. In fact, they
need not be based on lists at all. The following example illustrates the use of a query to redefine a
single tuple:

define FirstInpatientEncounter:
First([Encounter] E where E.class = 'inpatient' sort by E.period.start desc)

define RedefinedEncounter:
FirstInpatientEncounter E
return Tuple {
type: E.type,
admissionDate: E.period.start
dischargeDate: E.period.end

}

In addition, even if a given query is based on a list of tuples, the results are not required to be
tuples. For example, if only the length of stay is required, the following example could be used to
return a list of integers representing the length of stay in days for each encounter:

[Encounter: "Inpatient"] E
return duration in days of E.period

3.11 Defining Functions

CQL provides for the definition of functions. A function in CQL is a named expression that is
allowed to take any number of arguments, each of which has a name and a declared type. For
example:

define function CumulativeDuration(Intervals List<Interval<DateTime>>):
Sum((collapse Intervals) X return duration in days of X)

This statement defines a function named CumulativeDuration that takes a single argument named
Intervals of type List<Interval<DateTime>>. The function returns the sum of duration in days of
the collapsed intervals given. This function can then be used just as any other system-defined
function:

define Encounters: [Encounter: "Inpatient Visit"]
define CD: CumulativeDuration(Encounters E return E.period)

These statements establish an expression named cp that computes the cumulative duration of
inpatient encounters for a patient.

Within the library in which it is defined, a function can be invoked directly by name. When a
function is defined in a referenced library, the local library alias must be used to invoke the
function. For example, assuming a library with the above function definition and referenced with
the local alias Core:

define Encounters: [Encounter: "Inpatient Visit"]
define CD: Core.CumulativeDuration(Encounters E return E.period)

In this example, the CumulativeDuration function must be invoked using the local library alias
Core.

Functions can be defined that reference other functions anywhere within any library and to any
degree of nesting, so long as the reference does not result in a circular reference.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 110
© 2014-2017 Health Level Seven International. All rights reserved

Functions can also be defined as external to support the ability to import functionality defined in
external libraries. If a function is defined external, the return type must be provided:

define function IsSubsumedBy(code Code, subsumingCode Code) returns Boolean : external

CQL does not prescribe the details for how external functions are resolved or implemented, only
that an implementation must accept the arguments as specified by the signature, and is expected
to return a value of the declared return type.

3.12 Using FHIRPath

FHIRPath is a general-purpose graph traversal language designed as a simple way to define paths
on a hierarchical data model such as FHIR. The language is used within the FHIR specification to
provide precise semantics for various items in the specification such as invariants and search
parameter paths. Because of the general-purpose nature of FHIRPath, CQL uses the basic
expression definition capabilities defined by FHIRPath for its core expression terms. In fact, the
ANTLR grammar for CQL imports the FHIRPath grammar and relies on the semantics defined
there to define the base expression functionality of CQL, in much the same way that XQuery
utilizes XPath to define its expression capabilities. In other words, CQL is a superset of
FHIRPath, meaning that any valid FHIRPath expression is also a valid CQL expression.

However, FHIRPath has various implicit conversions defined to simplify expression of common
path traversal scenarios. Because CQL is a type-safe language, some of this functionality can
optionally be restricted within CQL through the use of several language options, as described in
the following sections.

3.12.1 Path Traversal

Paths in FHIRPath are constructed by concatenating labels using a dot qualifier:

Patient.name.given

In this case, the path begins at the patient expression and accesses the name property, followed
by the given property of each name. Because the given path invocation is targeting the list of
names, the property access is invoked for each name in the list, resulting in a list of all the given
elements for every name in the Patient.

However, because property access on a list may actually be the result of mistakenly expecting the
property to be singular, this behavior can be disabled with the disable-list-traversal option.

3.12.2 List Promotion and Demotion

In FHIRPath, all operations are defined to return collections, and operations that expect singleton
values are defined to throw an error when they are invoked with collections containing multiple
elements. In CQL, this behavior is implemented using list promotion and demotion.

Wherever an operator is defined to take a non-list-valued type as a parameter, list demotion
allows the arguments to be list-valued and are implicitly converted to a singleton value using the
singleton from operator:

Patient.name.given + ' ' + Patient.name.family

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 111
© 2014-2017 Health Level Seven International. All rights reserved

The disable-demotion option controls whether or not this expression is valid. With the option
enabled, the expression can be compiled, and will evaluate, so long as the run-time values of
given and family contain only a single element. With the option disabled, this expression will
no longer compile, and the list-valued arguments must be converted to a single value:

Patient.name.given.single() + ' ' + Patient.name.family.single ()

This allows the compiler to help the author determine whether a singular value is expected and
appropriate, or if the author mistakenly assumed the attribute was singular, when in fact the data
model allows multiple values.

The disable-promotion option controls whether or not list promotion is allowed in the translator.

3.12.3 Missing Information

FHIRPath traversal operations are defined such that only values that are present are returned. In
other words, it does not define a null indicator to represent missing information. Instead, it uses
the empty collection ({ }) and propagates empty collections in expressions. In general, if the
input to an operator or function is an empty collection, the result is an empty collection. This
corresponds to the null propogation semantics of CQL, particularly with respect to the three-
valued logic semantics of the logical operators.

3.12.4 Type Resolution

The FHIRPath specification does not require strongly-typed interpretation. In particular, the
resolution of property names can be deferred completely to run-time, allowing for flexible use of
expressions such as .children () and .descendents (). However, because CQL is a strongly-
typed language, these types of expressions are required to be resolved at compile-time.

For example, consider the following FHIRPath:

Patient.children () .name

This expression returns a list of the name elements of all the children of the Patient instance. To
accomplish this in CQL, the result of .children () is a list of elements of choice types, where
the types in the choice are the distinct set of types of child elements.

This approach enables the flexibility of FHIRPath expressions but still maintains compile-time
type resolution.

3.12.5 Method Invocation

The FHIRPath syntax is designed as a fluent API, meaning that operations are invoked using a
dot-invocation syntax. This functionality is supported in CQL using a syntactic method construct,
similar to a lambda function, that allows the invocation to be rewritten as an equivalent function
call. The method definition is allowed to declare context variables such as $this that can be
addressed in the body of the method.

This mechanism is then used to implement the FHIRPath operators, which are rewritten via the
lambda replacement as direct invocations of CQL. The detailed equivalents for all FHIRPath
operations are defined in the FHIRPath Function Translation Appendix.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 112
© 2014-2017 Health Level Seven International. All rights reserved

The disable-method-invocation option controls whether or not method-style invocation is
allowed in the translator.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 113
© 2014-2017 Health Level Seven International. All r