
HL7_CQLANG_R1_D2_2017JAN

HL7 Standard: Clinical Quality Language
Specification, Release 1.2

January 2017

HL7 STU Specification

Sponsored by:

Clinical Decision Support and Clinical Quality Information Work
Groups

in collaboration with the Health and Human Services Standards
and Interoperability Framework Clinical Quality Framework

Initiative

HL7 Standard: Clinical Quality Language Specification, Release 1 Page ii
© 2014-2017 Health Level Seven International. All rights reserved

Copyright © 2014-2017 Health Level Seven International ® ALL RIGHTS RESERVED. The reproduction of this

material in any form is strictly forbidden without the written permission of the publisher. HL7 and Health Level

Seven are registered trademarks of Health Level Seven International. Reg. U.S. Pat & TM Off.

Use of this material is governed by HL7's IP Compliance Policy.

http://www.hl7.org/legal/ippolicy.cfm?ref=nav

HL7 Standard: Clinical Quality Language Specification, Release 1 Page iii
© 2014-2017 Health Level Seven International. All rights reserved

Identifying Information for Specification:

Specification Name and Release Number: HL7 Standard: Clinical Quality Language

Specification, Release 1.2

Realm: Universal

Ballot Level: Standard for Trial Use (STU)

Ballot Cycle: January 2017

Specification Date: May 2017

HL7 Standard: Clinical Quality Language Specification, Release 1 Page iv
© 2014-2017 Health Level Seven International. All rights reserved

Co-Chair (CDS): Guilherme Del Fiol, MD, PhD
University of Utah Health Care
guilherme.delfiol@utah.edu

Co-Chair (CDS): Robert Jenders, MD, MS
jenders@ucla.edu

Co-Chair (CDS): Kensaku Kawamoto, MD, PhD
University of Utah Health Care
kensaku.kawamoto@utah.edu

Co-Chair (CDS): Howard Strasberg
Walters Kluwer Health
howard.strasberg@wolterskluwer.com

Co-Chair (CQI): Patricia Craig
The Joint Commission
pcraig@jointcommission.org

Co-Chair (CQI): Floyd Eisenberg
iParsimony LLC
FEisenberg@iParsimony.com

Co-Chair (CQI): Chris Millet
chris@thelazycompany.com

Co-Chair (CQI): Walter Suarez, MD, MPH
Kaiser Permanente
walter.q.suarez@kp.org

Co-Chair (CQI): Kanwarpreet Sethi

Lantana Consulting Group

kp.sethi@lantanagroup.com

Co-Chair (ITS): Paul Knapp
Knapp Consulting Inc.
pknapp@pknapp.com

Co-Chair (ITS): Dale Nelson

Lantana Consulting Group

dale.nelson@squaretrends.com

Co-Chair (ITS): Andy Stechishin
HL7 Canada

andy.stechishin@gmail.com

Co-Author: Bryn Rhodes

Database Consulting Group

bryn@databaseconsultinggroup.com

Co-Author: Chris Moesel

The MITRE Corporation
cmoesel@mitre.org

Co-Author: Marc Hadley

The MITRE Corporation

mhadley@mitre.org

Co-Author: Mark Kramer

The MITRE Corporation

mkramer@mitre.org

Co-Author: Robert Dingwell

The MITRE Corporation

bobd@mitre.org

mailto:guilherme.delfiol@utah.edu
mailto:jenders@ucla.edu
mailto:kensaku.kawamoto@utah.edu
mailto:howard.strasberg@wolterskluwer.com
mailto:pcraig@jointcommission.org
mailto:FEisenberg@iParsimony.com
mailto:chris@thelazycompany.com
mailto:walter.q.suarez@kp.org
mailto:kp.sethi@lantanagroup.com
mailto:pknapp@pknapp.com
mailto:dale.nelson@squaretrends.com
mailto:andy.stechishin@gmail.com
mailto:bryn@veracitysolutions.com
mailto:cmoesel@mitre.org
mailto:mhadley@mitre.org
mailto:mkramer@mitre.org
mailto:bobd@mitre.org

HL7 Standard: Clinical Quality Language Specification, Release 1 Page v
© 2014-2017 Health Level Seven International. All rights reserved

Co-Editor: Aziz Boxwala, PhD
Meliorix
aziz.boxwala@meliorix.com

Revision History

Initial Publication as a DSTU: April 2015

Update 1 Changes:

#954: Changed define clause within the query to let clause to avoid ambiguity in the grammar, as

well as potential confusion regarding local vs global defines

#951: Comments moved to the HIDDEN channel

#950: Changed “matches” to “~”

#949: Changed list indexes to be 0-based instead of 1-based

#948: Changed string literals and identifiers to use industry-standard escape sequences

#944: Clarified example in 2.5.8.2

#911: Fixed incorrect reference to MinValue in 9.6.9

#827: Added List<Code> to Code conversion as implicit

#823: Fixed incorrect definition of the Concept type in 9.1.4

#804: Added Exp operator, inverse of Ln

#803: Renamed Expand to Flatten to better reflect operator semantics

#802: Added examples for properly includes and properly included in

#801: Fixed typographical error

#765: Clarified behavior of value set expansion when code system version is not specified

#763: Added weeks as a supported duration

#762: Fixed an invalid cross reference

#741: Corrected out-of-date diagram of interval operations

#735: Fixed mapping of between operator to ELM

#721: Clarified behavior for forward/circular expressions and function definitions

#719: Clarified behavior of a library when no library header is specified

#718: Clarified documentation of the path attribute for the Property type in ELM

#716: Added ability to use between as an interval constructor for comparison

#713: Corrected description of implicit conversion between structured and class types

#714: Corrected signatures for the Multiply operator in 9.6.11

#715: Clarified that during is a synonym of included in

1.1 Review #1: Changed <> operator to !=

1.1 Review #2: Added support for forward function declarations

mailto:aziz.boxwala@meliorix.com

HL7 Standard: Clinical Quality Language Specification, Release 1 Page vi
© 2014-2017 Health Level Seven International. All rights reserved

1.1 Review #3: Fixed table headers for implicit conversion table

1.1 Review #4: Clarified wording for tuple conversion description

1.1 Review #5: Clarified requirements for indexers in property paths

1.1 Review #6: Clarified semantics for multiplication and division involving quantities

#966: Improved semantics of usingDefinition production rule in grammar

#991: Clarified semantics of the conditional expression

#720: Added top-level constructs for code and concept

Update 2 Changes:

Adopted the FHIRPath.g4 grammar as the base expression grammar for the language

Expanded semantics to enable FHIRPath expressions:

 Added ability to invoke property accessors on a list

 Added $ and % identifier scopes

 Added implies operator

 Added | as a synonym for union

 Added & string concatenation operator

 Added promotion and demotion of lists

 Added options to support enabling aspects of FHIRPath functionality

 Added “method-style” invocation syntax

 Added rewrite rules for FHIRPath operations

Added Repeat, Slice, StartsWith, EndsWith, Matches, ReplaceMatches, LastPositionOf,

Children, and Descendents operations

Applied “treat null as empty list” semantics for list operators (e.g. exists (null) now

returns false, not null)

Added ToList operator to support efficient list promotion

Corrected String concatenation mapping

Clarified runtime behavior for options on quantities with incompatible units

Clarifications and errata throughout based on ballot comments

#824: Fixed Substring declarations in ELM

#991: Clarified semantics for conditional expressions

#1009: Clarified semantics and usage of retrieve with codes and terminologies

#1013: Changed semantics of set operators to distinct

#1031: Clarified semantics of decimal equality (trailing zeroes are ignored)

#1057: Added CQL and ELM Media Types and URL.

#1064: Added support for declaration-only libraries

HL7 Standard: Clinical Quality Language Specification, Release 1 Page vii
© 2014-2017 Health Level Seven International. All rights reserved

#1102: Clarified quoted-identifier semantics

#1105: Added version header to CQL grammar file

#1111: Clarified semantics of time-based quantities

#1114: Clarified calculations involving weeks

#1116: Specified semantics for CQL versioning within libraries

#1120: Clarified semantics of date/time arithmetic with timezones

#1122: Added choice types

#1196: Clarified semantics of multiple with/without clauses in a query

#1197: Clarified semantics of weeks for date/time operations

#1221: Added warnings for decimal truncation of time-valued quantities

#1223: Added external function definitions to support import of external libraries

#1229: Clarified subtype vs proper subtype definition

#1232: Fixed incorrect IndexOf documentation

#1233: Fixed Implies signature

#1235: Clarified semantics for Upper and Lower operators

#1236: Clarified semantics for Min and Max aggregate operators

#1237: Clarified semantics for Age in a population context

#1287: Clarified rules for interval construction

#1309: Called clause in the include definition is now optional

#1310: Added source locator information to ELM

#1311: Added result type information to ELM

#1312: Specified JSON format for ELM

#1313: Added less than/more than qualifiers to interval operator phrases

#1314: Provided examples for time interval calculations

#1315: Clarified type inference rules for queries

#1316: Added EndsWith operator

#1317: Fixed an error with escape characters not parsing correctly

#1336: Clarified semantics for before/after timing phrases

#1337: Added on or/or on qualifier to timing phrases to enable inclusive before/after

#1339: Clarified sort behavior in the presence of nulls

#1340: Added Message operators to support errors, warnings, messages and tracing

#1341: Relaxed syntactic restriction on terminology expression in retrieves

#1345: Corrected interpretation of timing phrases

#1348: Clarified let semantics and added documentation for the let clause

HL7 Standard: Clinical Quality Language Specification, Release 1 Page viii
© 2014-2017 Health Level Seven International. All rights reserved

Acknowledgments

The authors wish to recognize the S&I Framework Clinical Quality Framework Initiative Work

Group and the HL7 Clinical Decision Support, Clinical Quality Improvement, and

Implementable Technology Specifications Work Groups for their contributions to this document.

Copyrights

This material includes SNOMED Clinical Terms ® (SNOMED CT®), which are used by

permission of the International Health Terminology Standards Development Organization

(IHTSDO). All rights reserved. SNOMED CT was originally created by The College of

American Pathologists. "SNOMED ®" and "SNOMED CT ®" are registered trademarks of the

IHTSDO.

This material contains content from LOINC® (http://loinc.org). The LOINC table, LOINC

codes, and LOINC panels and forms file are copyright (c) 1995-2011, Regenstrief Institute, Inc.

and the Logical Observation Identifiers Names and Codes (LOINC) Committee and available at

no cost under the license at http://loinc.org/terms-of-use.

This material contains content from the Unified Code for Units of Measure (UCUM)

(http://unitsofmeasure.org). The UCUM specification is copyright (c) 1999-2013, Regenstrief

Institute, Inc. and available at no cost under the license at

http://unitsofmeasure.org/trac/wiki/TermsOfUse.

This material contains quality measure content developed by the National Committee for Quality

Assurance (NCQA). The measure content is copyright (c) 2008-2013 National Committee for

Quality Assurance and used in accordance with the NCQA license terms for non-commercial use.

http://loinc.org/terms-of-use
http://unitsofmeasure.org/
http://unitsofmeasure.org/trac/wiki/TermsOfUse

HL7 Standard: Clinical Quality Language Specification, Release 1 Page ix
© 2014-2017 Health Level Seven International. All rights reserved

EXECUTIVE SUMMARY

In support of the United States’ national objectives for healthcare reform, the Office of the

National Coordinator for Health Information Technology (ONC) Standards and Interoperability

(S&I) Framework has sponsored the development of harmonized interoperability specifications.

These specifications are designed to support national health initiatives and healthcare priorities,

including Meaningful Use, the Nationwide Health Information Network, and the ongoing

mission to improve population health.

The nation is reaching a critical mass of electronic health record systems (EHRs) that comply

with data and vocabulary standards. Providers seeking to meaningfully use EHRs face a variety

of challenging tasks. Those tasks include assessing needs, selecting and negotiating with a

system vendor or reseller, implementing project management, and instituting workflow changes

to improve clinical performance, control costs, and ultimately, improve outcomes. Additionally,

many providers face the challenge of integration and interoperation with disparate systems. Many

institutions use their own proprietary vocabularies and data models. Though this may offer some

internal flexibility, it comes with a high, often hidden, long term maintenance cost.

In support of this wide deployment of EHRs, there is an opportunity to implement a learning

health system that includes clinical quality measurement and improvement aspects and provides a

broad range of benefits that can contribute towards improved health of individuals and the

population as a whole (refer to “Digital Infrastructure for the Learning Health System: The

Foundation for Continuous Improvement in Health and Health Care: Workshop Series

Summary”).

The S&I Framework Clinical Quality Framework Initiative (CQF) is developing a foundational

specification, reusing much of the work currently done in health quality standardization, to

enable the structuring and encoding of quality content for use as “knowledge artifacts.” These

artifacts can be used in support of many areas of the healthcare system, including quality and

utilization measurement, disease outbreak detection, comparative effectiveness analysis,

evaluation of drug treatment efficacy, monitoring health trends, and other public health, research,

and information sharing across the continuum of care. Although the scope of this project focuses

on quality knowledge and decision support, potential uses for CQL are not limited to these areas.

For example, the CQL grammar can be used to express formal information extraction and

transformation rules for converting and deriving data as it is moved from one representation or

use to another.

One key benefit of this proposed approach is the definition of a “lingua franca” for the exchange

of quality knowledge and artifacts. Rather than having an unscalable network of point-to-point

communication channels, each with its own set of transformations, different organizations will

only need to transform their content to a CQF-compatible format to communicate effectively

with any other point in the network of providers that comprises today’s healthcare system. If the

models and vocabularies are rich enough, some quality vendors may opt to use CQF as an

internal specification in the future.

This specification is developed in support of the CQF Artifact Sharing Use Case and is intended

to assist implementers in the development of clinical quality knowledge artifacts for both the

decision support and quality measurement domains. The approach adopted in this specification is

HL7 Standard: Clinical Quality Language Specification, Release 1 Page x
© 2014-2017 Health Level Seven International. All rights reserved

designed to be flexible and reusable, and to provide a baseline for health quality vendors and

implementers of systems that create and use knowledge artifacts to improve the health of

individuals and the population as a whole.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xi
© 2014-2017 Health Level Seven International. All rights reserved

Table of Contents

1 INTRODUCTION .. 24
1.1 Background ... 24

1.2 Clinical Quality Framework Initiative ... 26

1.3 Approach ... 26

1.3.1 Author Perspective .. 27

1.3.2 Logical Perspective ... 27

1.3.3 Physical Perspective ... 28

1.4 Audience ... 29

1.5 Scope of the Specification .. 29

1.6 Alignment to CQF Artifact Sharing Use Case ... 30

1.6.1 Use Case Assumptions and Conditions .. 30

1.7 Relationship to Other HL7 Specifications ... 31

1.7.1 Health Quality Measure Format (HQMF) .. 31

1.7.2 Clinical Decision Support Knowledge Artifact Specification (KAS) ... 31

1.7.3 Fast Healthcare Interoperability Resources (FHIR) .. 31

1.7.4 FHIRPath ... 31

1.8 Organization of this Specification ... 31

2 AUTHOR’S GUIDE .. 33
2.1 Declarations .. 33

2.1.1 Library .. 34

2.1.2 Data Models... 34

2.1.3 Libraries ... 35

2.1.4 Terminology ... 35

2.1.5 Parameters .. 36

2.1.6 Context .. 37

2.1.7 Statements... 37

2.2 Retrieve ... 38

2.2.1 Clinical Statement Structure .. 38

2.2.2 Filtering with Terminology .. 38

2.2.3 Retrieve Context .. 39

2.3 Queries ... 40

2.3.1 Filtering .. 40

2.3.2 Shaping .. 41

2.3.3 Sorting ... 41

2.3.4 Relationships ... 42

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xii
© 2014-2017 Health Level Seven International. All rights reserved

2.3.5 Full Query .. 43

2.4 Values ... 44

2.4.1 Simple Values .. 45

2.4.2 Clinical Values ... 46

2.4.3 Structured Values (Tuples) .. 49

2.4.4 List Values ... 50

2.4.5 Interval Values ... 51

2.5 Operations .. 52

2.5.1 Comparison Operators .. 52

2.5.2 Logical Operators .. 54

2.5.3 Arithmetic Operators .. 54

2.5.4 Date/Time Operators ... 55

2.5.5 Timing and Interval Operators ... 61

2.5.6 List Operators .. 67

2.5.7 Aggregate Operators ... 72

2.5.8 Clinical Operators .. 73

2.6 Authoring Artifact Logic ... 75

2.6.1 Running Example .. 75

2.6.2 Clinical Quality Measure Logic .. 76

2.6.3 Using Define Statements ... 80

2.6.4 Clinical Decision Support Logic ... 82

2.6.5 Using Libraries to Share Logic .. 85

3 DEVELOPER’S GUIDE .. 88
3.1 Lexical Elements ... 88

3.1.1 Whitespace .. 88

3.1.2 Comments ... 88

3.1.3 Literals ... 89

3.1.4 Symbols ... 89

3.1.5 Keywords ... 90

3.1.6 Identifiers ... 90

3.1.7 Operator Precedence .. 91

3.1.8 Case-Sensitivity ... 92

3.2 Libraries .. 93

3.2.1 Access Modifiers ... 93

3.2.2 Identifier Resolution ... 93

3.2.3 Function Resolution ... 94

3.3 Data Models .. 94

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xiii
© 2014-2017 Health Level Seven International. All rights reserved

3.3.1 Alternate Data Models ... 94

3.3.2 Multiple Data Models ... 94

3.4 Types .. 95

3.4.1 System-Defined Types .. 95

3.4.2 Specifying Types.. 96

3.4.3 Type Testing ... 97

3.4.4 Choice Types ... 97

3.4.5 Type Inference ... 98

3.4.6 Conversion... 100

3.4.7 Casting ... 102

3.4.8 Promotion and Demotion ... 103

3.4.9 Conversion Precedence .. 103

3.5 Conditional Expressions ... 104

3.6 Nullological Operators .. 105

3.7 String Operators .. 105

3.8 Introducing Context in Queries ... 107

3.9 Multi-Source Queries .. 107

3.10 Non-Retrieve Queries ... 109

3.11 Defining Functions ... 110

3.12 Using FHIRPath ... 111

3.12.1 Path Traversal.. 111

3.12.2 List Promotion and Demotion .. 111

3.12.3 Missing Information ... 112

3.12.4 Type Resolution ... 112

3.12.5 Method Invocation ... 112

4 LOGICAL SPECIFICATION ... 114
4.1 Expressions ... 115

4.2 Simple Values .. 115

4.3 Comparison Operators .. 115

4.4 Logical Operators... 116

4.5 Nullological Operators ... 117

4.6 Conditional Operators .. 117

4.7 Arithmetic Operators .. 119

4.8 String Operators .. 120

4.9 Date and Time Operators ... 121

4.10 Interval Operators ... 122

4.11 Structured Values .. 123

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xiv
© 2014-2017 Health Level Seven International. All rights reserved

4.12 List Values ... 124

4.13 Aggregate Operators .. 126

4.14 Type Specifiers and Operators ... 126

4.15 Queries ... 127

4.16 Reusing Logic ... 128

4.17 External Data .. 128

4.18 Clinical Operators ... 129

4.19 Parameters ... 130

4.20 Data Model .. 130

4.21 Libraries .. 130

4.22 Errors and Messages .. 131

5 LANGUAGE SEMANTICS ... 132
5.1 Clinical Data Retrieval in Quality Artifacts .. 132

5.1.1 Defining Clinical Data .. 132

5.1.2 Conformance Levels .. 133

5.1.3 Artifact Data Requirements ... 134

5.2 Expression Language Semantics ... 135

5.2.1 Data Model .. 135

5.2.2 Language Elements ... 136

5.2.3 Semantic Validation ... 137

5.2.4 Execution Model .. 138

5.3 Query Evaluation .. 140

5.3.1 Evaluate Sources .. 140

5.3.2 Iteration .. 140

5.3.3 Sort .. 141

5.3.4 Implementing Query Evaluation .. 142

5.4 Timing Calculations ... 142

5.4.1 Definitions .. 142

5.4.2 Date/Time Arithmetic ... 145

5.5 Precision-Based Timing .. 146

5.5.1 Uncertainty... 147

5.5.2 Determining Difference and Duration .. 149

5.5.3 Timing Phrases .. 150

5.5.4 Implementing Precision-Based Timing with Uncertainty ... 152

6 TRANSLATION SEMANTICS ... 153
6.1 CQL-to-ELM .. 153

6.1.1 Declarations ... 153

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xv
© 2014-2017 Health Level Seven International. All rights reserved

6.1.2 Types ... 154

6.1.3 Literals and Selectors .. 154

6.1.4 Functions ... 154

6.1.5 Phrases .. 160

6.1.6 Queries .. 160

6.2 ELM-to-CQL .. 160

6.2.1 ForEach ... 162

6.2.2 Times ... 162

6.2.3 Filter ... 163

6.2.4 Sort .. 163

7 PHYSICAL REPRESENTATION .. 164
7.1 Schemata .. 164

7.1.1 Media Types and Namespaces ... 164

7.2 Library References.. 165

7.3 Data Model References .. 165

8 APPENDIX A – CQL SYNTAX FORMAL SPECIFICATION ... 167
8.1 Declarations .. 167

8.2 Type Specifiers ... 169

8.3 Statements .. 169

8.4 Queries ... 170

8.5 Expressions .. 172

8.6 Terms .. 174

8.7 Lexer Rules ... 176

9 APPENDIX B – CQL REFERENCE ... 177
9.1 Types .. 177

9.1.1 Any ... 177

9.1.2 Boolean .. 177

9.1.3 Code .. 177

9.1.4 Concept ... 178

9.1.5 DateTime ... 178

9.1.6 Decimal .. 178

9.1.7 Integer .. 178

9.1.8 Quantity ... 179

9.1.9 String ... 179

9.1.10 Time ... 179

9.2 Logical Operators.. 180

9.2.1 And .. 180

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xvi
© 2014-2017 Health Level Seven International. All rights reserved

9.2.2 Implies ... 180

9.2.3 Not ... 181

9.2.4 Or ... 181

9.2.5 Xor ... 181

9.3 Type Operators ... 182

9.3.1 As ... 182

9.3.2 Children ... 182

9.3.3 Convert .. 183

9.3.4 Descendents .. 184

9.3.5 Is .. 184

9.3.6 ToBoolean .. 184

9.3.7 ToConcept .. 184

9.3.8 ToDateTime ... 185

9.3.9 ToDecimal .. 185

9.3.10 ToInteger .. 186

9.3.11 ToQuantity .. 186

9.3.12 ToString .. 187

9.3.13 ToTime ... 187

9.4 Nullological Operators .. 188

9.4.1 Coalesce .. 188

9.4.2 IsNull .. 188

9.4.3 IsFalse ... 188

9.4.4 IsTrue ... 188

9.5 Comparison Operators ... 189

9.5.1 Between ... 189

9.5.2 Equal .. 189

9.5.3 Equivalent .. 190

9.5.4 Greater ... 190

9.5.5 Greater Or Equal ... 191

9.5.6 Less ... 191

9.5.7 Less Or Equal .. 192

9.5.8 Not Equal ... 192

9.5.9 Not Equivalent ... 192

9.6 Arithmetic Operators ... 193

9.6.1 Abs ... 193

9.6.2 Add .. 193

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xvii
© 2014-2017 Health Level Seven International. All rights reserved

9.6.3 Ceiling .. 193

9.6.4 Divide ... 194

9.6.5 Floor ... 194

9.6.6 Exp ... 194

9.6.7 Log ... 194

9.6.8 Ln ... 195

9.6.9 Maximum ... 195

9.6.10 Minimum .. 195

9.6.11 Modulo ... 196

9.6.12 Multiply ... 196

9.6.13 Negate ... 196

9.6.14 Predecessor... 197

9.6.15 Power ... 197

9.6.16 Round .. 197

9.6.17 Subtract ... 198

9.6.18 Successor .. 198

9.6.19 Truncate ... 199

9.6.20 Truncated Divide .. 199

9.7 String Operators .. 199

9.7.1 Combine .. 199

9.7.2 Concatenate .. 199

9.7.3 EndsWith ... 200

9.7.4 Indexer ... 200

9.7.5 LastPositionOf ... 200

9.7.6 Length .. 200

9.7.7 Lower ... 201

9.7.8 Matches ... 201

9.7.9 PositionOf .. 201

9.7.10 ReplaceMatches .. 201

9.7.11 Split .. 202

9.7.12 StartsWith .. 202

9.7.13 Substring .. 202

9.7.14 Upper ... 203

9.8 Date/Time Operators .. 203

9.8.1 Add .. 203

9.8.2 After ... 203

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xviii
© 2014-2017 Health Level Seven International. All rights reserved

9.8.3 Before .. 204

9.8.4 DateTime ... 204

9.8.5 Date/Time Component From ... 205

9.8.6 Difference .. 205

9.8.7 Duration ... 206

9.8.8 Now .. 206

9.8.9 Same As .. 206

9.8.10 Same Or After .. 207

9.8.11 Same Or Before ... 207

9.8.12 Subtract ... 208

9.8.13 Time ... 208

9.8.14 TimeOfDay ... 209

9.8.15 Today ... 209

9.9 Interval Operators ... 209

9.9.1 After ... 209

9.9.2 Before .. 210

9.9.3 Collapse ... 210

9.9.4 Contains ... 210

9.9.5 End .. 211

9.9.6 Ends ... 211

9.9.7 Equal .. 211

9.9.8 Equivalent .. 212

9.9.9 Except .. 212

9.9.10 In .. 212

9.9.11 Includes ... 212

9.9.12 Included In ... 213

9.9.13 Intersect ... 213

9.9.14 Meets ... 214

9.9.15 Not Equal ... 214

9.9.16 Not Equivalent ... 214

9.9.17 On Or After ... 215

9.9.18 On Or Before ... 215

9.9.19 Overlaps .. 216

9.9.20 Point From ... 216

9.9.21 Properly Includes ... 216

9.9.22 Properly Included In ... 217

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xix
© 2014-2017 Health Level Seven International. All rights reserved

9.9.23 Start ... 217

9.9.24 Starts ... 218

9.9.25 Union ... 218

9.9.26 Width .. 218

9.10 List Operators ... 218

9.10.1 Contains ... 218

9.10.2 Distinct ... 219

9.10.3 Equal .. 219

9.10.4 Equivalent .. 219

9.10.5 Except .. 219

9.10.6 Exists ... 220

9.10.7 Flatten .. 220

9.10.8 First .. 220

9.10.9 In .. 220

9.10.10 Includes .. 221

9.10.11 Included In ... 221

9.10.12 Indexer ... 221

9.10.13 IndexOf .. 222

9.10.14 Intersect ... 222

9.10.15 Last .. 222

9.10.16 Length .. 222

9.10.17 Not Equal ... 223

9.10.18 Not Equivalent.. 223

9.10.19 Properly Includes ... 223

9.10.20 Properly Included In ... 223

9.10.21 Singleton From... 224

9.10.22 Skip .. 224

9.10.23 Tail .. 224

9.10.24 Take ... 224

9.10.25 Union .. 225

9.11 Aggregate Functions ... 225

9.11.1 AllTrue.. 225

9.11.2 AnyTrue ... 225

9.11.3 Avg ... 225

9.11.4 Count ... 226

9.11.5 Max .. 226

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xx
© 2014-2017 Health Level Seven International. All rights reserved

9.11.6 Min ... 226

9.11.7 Median ... 227

9.11.8 Mode .. 227

9.11.9 Population StdDev ... 227

9.11.10 Population Variance ... 227

9.11.11 StdDev ... 228

9.11.12 Sum .. 228

9.11.13 Variance ... 228

9.12 Clinical Operators ... 228

9.12.1 Age .. 228

9.12.2 AgeAt ... 229

9.12.3 CalculateAge ... 229

9.12.4 CalculateAgeAt .. 230

9.12.5 Equal .. 230

9.12.6 Equivalent .. 230

9.12.7 In (Codesystem) .. 231

9.12.8 In (Valueset) ... 231

9.13 Errors and Messaging ... 232

9.13.1 Message .. 232

10 APPENDIX C – REFERENCE IMPLEMENTATIONS ... 233
10.1 CQL-ELM Translator Reference Implementation ... 233

10.2 CQL Execution Framework Reference Implementation ... 233

10.3 Other CQL-related Tools ... 233

11 APPENDIX D – REFERENCES ... 235

12 APPENDIX E – ACRONYMS .. 236
13 APPENDIX F – GLOSSARY ... 238
14 APPENDIX G – FORMATTING CONVENTIONS ... 240

14.1 Case-Related Conventions ... 240

14.1.1 CQL-Defined Casing ... 240

14.2 Spacing Conventions .. 241

14.3 Operators and Functions .. 241

14.3.1 Operators ... 241

14.3.2 Functions ... 242

14.4 Literals .. 242

14.4.1 Quantities ... 242

14.4.2 Intervals ... 242

14.4.3 Lists and Tuples ... 243

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xxi
© 2014-2017 Health Level Seven International. All rights reserved

14.5 Queries ... 243

14.6 Syntax Highlighting ... 244

15 APPENDIX H – TIME INTERVAL CALCULATION EXAMPLES 245
15.1 Calculating Duration in Years .. 245

15.1.1 Definition .. 245

15.1.2 Examples ... 246

15.2 Calculating Duration in Months ... 247

15.2.1 Definition .. 247

15.2.2 Examples ... 247

15.3 Calculating Duration in Weeks .. 248

15.3.1 Definition .. 248

15.3.2 Examples ... 248

15.4 Calculating Duration in Days .. 248

15.4.1 Definition .. 248

15.4.2 Examples ... 248

15.5 Calculating Duration in Hours ... 249

15.5.1 Definition .. 249

15.5.2 Examples ... 249

15.6 Calculating Duration in Minutes .. 249

15.6.1 Definition .. 249

15.6.2 Examples ... 249

15.7 Difference Calculations ... 249

15.7.1 Examples ... 250

16 APPENDIX I – FHIRPATH FUNCTION TRANSLATION ... 251
16.1 .all() ... 251

16.2 .allFalse() .. 251

16.3 .allTrue() .. 251

16.4 .anyFalse() .. 251

16.5 .anyTrue() .. 251

16.6 .as() ... 251

16.7 .children() .. 251

16.8 .combine() ... 251

16.9 .contains() ... 251

16.10 .count() .. 251

16.11 .descendents() ... 252

16.12 .distinct() .. 252

16.13 .empty() ... 252

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xxii
© 2014-2017 Health Level Seven International. All rights reserved

16.14 .endsWith() .. 252

16.15 .exists() .. 252

16.16 .first() ... 252

16.17 .iif() ... 252

16.18 .indexOf() ... 252

16.19 .is() ... 252

16.20 .isDistinct() ... 252

16.21 .last() .. 252

16.22 .lastIndexOf() ... 253

16.23 .length() ... 253

16.24 .matches() .. 253

16.25 .ofType() .. 253

16.26 .not() .. 253

16.27 .now() ... 253

16.28 .repeat() ... 253

16.29 .replace() ... 253

16.30 .replaceMatches() .. 253

16.31 .select() .. 253

16.32 .single() .. 254

16.33 .skip() ... 254

16.34 .startsWith() ... 254

16.35 .subsetOf() ... 254

16.36 .substring() ... 254

16.37 .supersetOf() .. 254

16.38 .tail() ... 254

16.39 .take() .. 254

16.40 .toBoolean() ... 254

16.41 .toDateTime() ... 254

16.42 .today() .. 254

16.43 .toDecimal() ... 255

16.44 .toInteger() ... 255

16.45 .toString() ... 255

16.46 .toTime() .. 255

16.47 .trace() ... 255

16.48 .where() ... 255

HL7 Standard: Clinical Quality Language Specification, Release 1 Page xxiii
© 2014-2017 Health Level Seven International. All rights reserved

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 24
© 2014-2017 Health Level Seven International. All rights reserved

1 INTRODUCTION

The Clinical Quality Language Specification defines a representation for the expression of

clinical knowledge that can be used within both the Clinical Decision Support (CDS) and

Clinical Quality Measurement (CQM) domains. Although several standards exist for the

expression of clinical quality logic, these standards are not widely adopted and present various

barriers to point-to-point sharing of clinical knowledge artifacts such as lack of tooling,

complexity of implementation, or insufficient expressivity.

Rather than attempt to address these shortcomings in one of the existing standards, this

specification provides a solution to enable shared understanding of clinical knowledge by

defining a syntax-independent, canonical representation of logic that can be used to express the

knowledge in any given artifact, and point-to-point sharing by defining a serialization for that

representation.

The canonical representation, the Expression Logical Model (ELM), is informed conceptually by

the requirements of the clinical quality domains of measurement and improvement, and

technically by compiler design best practices. The resulting canonical representation provides a

basis for sharing logic in a way that is at once verifiable, computable, and can serve as the input

to language processing applications such as translation, tooling, or even execution engines.

In addition, this specification introduces a high-level, domain-specific language, Clinical Quality

Language (CQL), focused on clinical quality and targeted at measure and decision support

artifact authors. This high-level syntax can then be rendered in the canonical representation

provided by ELM.

1.1 Background

Clinical Decision Support and Clinical Quality Measurement are closely related, share many

common requirements, and both support improving healthcare quality. However, the standards

used for the electronic representation of CDS and CQM artifacts have not been developed in

consideration of each other, and the domains use different approaches to the representation of

patient data and computable expression logic. The first step in enabling a harmonization of these

approaches is clearly identifying the various components involved in the specification of quality

artifacts, and then establishing as a principle the notion that they should be treated independently.

Broadly, the components of an artifact involve specifying:

• Metadata – Information about the artifact such as its identifier and version, what health

topics it covers, supporting evidence, related artifacts, etc.

• Clinical Quality Information – The structure and content of the clinical data involved in

the artifact

• Expression Logic – The actual knowledge and reasoning being communicated by the

artifact

Considering each of these components separately, the next step involves identifying the

relationship of the current specifications to each component, as shown in the following table:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 25
© 2014-2017 Health Level Seven International. All rights reserved

Model Type

Quality
Information

Computable
Expression

Logic
Metadata

Clinical
Decision
Support (CDS)

Physical and
logical

Virtual Medical
Record (vMR)

CDS Knowledge
Artifact
Specification

CDS Knowledge
Artifact
Specification/Decision
Support Service

Electronic
Clinical Quality
Measurement
(eCQM)

Physical Quality Reporting
Document
Architecture
(QRDA)

Health Quality
Measure Format
(HQMF)

Health Quality
Measure Format
(HQMF)

Logical Quality Data
Model (QDM)

Quality Data
Model (QDM)

TABLE 1-A

The discrepancy shown here between standards used in the different domains introduces burdens

on both vendors and providers in electronic healthcare quality domains, including:

• Inability to share logic between CDS and CQM artifacts, even though large portions of

the logic involved represent the same conceptual knowledge

• Duplicated effort in the interpretation, integration, and execution of CDS and CQM

artifacts

• Duplicated effort in the mapping of clinical information from vendor and provider

systems to the different CDS and CQM artifacts

Using the framework of metadata, data model, and expression logic, the following diagram

depicts the overall target specification areas involved in clinical quality artifact representation:

FIGURE 1-A

Following this overall structure, this specification focuses on the common representation of

expression logic that CQM and CDS-specific artifact standards can then reference. Separate

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 26
© 2014-2017 Health Level Seven International. All rights reserved

specifications address metadata and data model. Note, however, that the QUICK specification,

and the Quality Improvement Core (QICore) Profiles are being developed concurrently with this

specification to ensure that the two specifications interoperate effectively.

In addition, this specification is designed to be data model independent, meaning that CQL and

ELM have no explicit dependencies on any aspect of any particular data model. Rather, the

specification allows for any data model to be used, so long as a suitable description of that data

model is supplied. Chapter 7 of this specification discusses how that description is supplied, and

what facilities an implementation must support in order to enable complete data model

independence of CQL and ELM.

1.2 Clinical Quality Framework Initiative

The S&I Framework is an approach adopted by ONC's Office of Standards & Interoperability to

fulfill its charge of enabling harmonized interoperability specifications to support national health

outcomes and healthcare priorities. The S&I Framework is a collaborative community of

participants from the public and private sectors who are focused on providing the tools, services,

and guidance to facilitate the functional exchange of health information. More information about

the S&I Framework can be found here: http://siframework.org/

The S&I Framework uses a set of integrated functions, processes, and tools that enable execution

of specific value-creating initiatives. Each S&I initiative focuses on a single, narrowly scoped,

broadly applicable challenge.

The Clinical Quality Framework (CQF) is an S&I initiative focused on identifying, defining, and

harmonizing standards and specifications that promote integration and reuse between Clinical

Decision Support (CDS) and Clinical Quality Measurement (CQM). Additional information

about the CQF initiative, including a project charter, can be found here:

http://wiki.siframework.org/Clinical+Quality+Framework+Charter+and+Members

Stakeholder input and subject matter expert (SME) guidance has led to the development of

several CQF use cases defining the functional aspects of clinical quality measurement and

improvement. These use cases are described in detail here:

http://wiki.siframework.org/Clinical+Quality+Framework+Use+Cases

1.3 Approach

As discussed in Section 1.1, one key principle underlying the current harmonization efforts is the

separation of responsibilities within an artifact into metadata, clinical information, and

expression logic. Focusing on the expression logic component and identifying the requirements

common to both quality measurement and decision support, the Clinical Decision Support HL7

Work Group produced a harmonized conceptual requirements document: HL7 Domain Analysis

Model: Harmonization of Health Quality Artifact Reasoning and Expression Logic. These

requirements form the basis for the reasoning capabilities that this specification provides.

Building on those conceptual requirements, this specification defines the logical and physical

layers necessary to achieve the goal of a unified specification for expression logic for use by both

the clinical quality and decision support domains.

Broadly, this specification can be viewed from three perspectives:

http://siframework.org/
http://wiki.siframework.org/Clinical+Quality+Framework+Charter+and+Members
http://wiki.siframework.org/Clinical+Quality+Framework+Use+Cases

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 27
© 2014-2017 Health Level Seven International. All rights reserved

• Author – The author perspective is concerned with clearly and correctly communicating

and interpreting the semantics defined at the conceptual level, from a human perspective.

• Logical – The logical perspective is concerned with representing the semantics of

expressions in the simplest complete way.

• Physical – The physical perspective is concerned with clearly and correctly

communicating or interpreting the semantics defined at the logical level, from a machine

perspective.

In other words, the logical level of the specification can be thought of as a complete bi-

directional mapping between the author and physical levels. The various components involved in

the specification are then concerned with ensuring that semantics can be clearly communicated

through each of these levels.

1.3.1 Author Perspective

At the highest level, the author perspective is concerned with the human-readable description of

clinical quality logic. This level is represented within this specification as a high-level syntax

called Clinical Quality Language (CQL). CQL is a domain-specific language for clinical quality

and is intended to be usable by clinical domain experts to both author and read clinical

knowledge.

The author perspective is informed conceptually by the Quality Data Model (QDM), the current

conceptual representation of electronic clinical quality measures. This heritage is intended to

provide familiarity and continuity for authors coming from the quality space.

1.3.2 Logical Perspective

The logical perspective of the specification is concerned with complete and accurate

representation of the semantics involved in the expression of quality logic, independent of the

syntax in which that logic is rendered.

For the logical layer, this specification defines a Unified Modeling Language (UML) model

called the Expression Logical Model (ELM) that defines a canonical representation of expression

logic. This approach is intended to simplify implementation and machine processing by focusing

on the content of an expression, rather than the syntax used to render it. The approach is based on

and motivated by the concept of an Abstract Syntax Tree from traditional compiler

implementation. The following diagram depicts the steps performed by a traditional compiler:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 28
© 2014-2017 Health Level Seven International. All rights reserved

FIGURE 1-B

As shown here, the ELM representation is defined as an Abstract Syntax Tree, eliminating the

need for lexical analysis and parsing steps, and allowing implementations to concentrate on the

core representation of the logic.

In addition, this approach avoids potential ambiguity that must be resolved with operator

precedence and/or the use of parentheses in traditional expression languages.

The result is a dramatic reduction in the complexity of processing quality artifacts, whether that

processing involves translation to another format, evaluation of the logic, or building a user-

interface for authoring or visual representation of the artifact.

The logical perspective is informed conceptually by the HL7 Version 3 Standard: Clinical

Decision Support Knowledge Artifact Specification, Release 1.2 (CDS KAS), a prior version of a

standard for the representation of clinical decision support artifacts. This heritage is intended to

provide familiarity and continuity for authors and consumers in the decision support space. The

current version of that standard, Release 1.3, has been updated to use the ELM as defined in this

specification.

1.3.3 Physical Perspective

The physical perspective is concerned with the implementation and communication aspects of the

logical model—specifically, with how the canonical representation of expression logic is shared

between producers and consumers. This specification defines an XML schema representation of

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 29
© 2014-2017 Health Level Seven International. All rights reserved

the ELM for this purpose, describes the intended semantics of CQL, and discusses various

implementation approaches.

1.4 Audience

The audience for this specification includes stakeholders and interested parties from a broad

range of health quality applications, including health IT vendors, quality agencies, quality artifact

authors and consumers, and any party interested in producing or consuming health quality

artifacts.

The specification is written with the following major roles in mind:

Role Description

Author A clinical domain expert or clinical artifact author intending to use the Clinical
Quality Language specification to author or understand quality artifacts

Developer A developer interested in building more complex clinical quality artifacts as well as
shared libraries for use by authors

Integrator A health IT professional interested in integrating quality artifacts based on the
Clinical Quality Language specification into a health quality system

Implementer A systems analyst, architect, or developer interested in building language
processing applications for artifacts based on the Clinical Quality Language
specification, such as translators, interpreters, tooling, etc.

TABLE 1-B

Note that even the material in Chapter 2 is somewhat technical in nature, and that Authors will

benefit from some familiarity with and/or training in basic computer language and database

language topics.

In general, each of these roles will benefit from focusing on different aspects of the specification.

In particular, the Author role will be primarily interested in Chapter 2, the Language Guide for

the high-level CQL syntax; the Developer role will be primarily interested in Chapters 2 & 3; the

Integrator role will be primarily interested in Chapter 4, the formal description of the logical

model; and the Implementer role will be primarily interested in Chapters 5, 6, and 7, which

discuss the intended execution semantics, translation semantics, and physical representation,

respectively.

1.5 Scope of the Specification

The Clinical Quality Language specification includes the following components:

• CQL Grammar – An ANTLR4 grammar file formally defining the syntax for the high-

level authoring language described by this specification

• Expression Logical Model – A UML model that specifies a canonical representation for

expression logic

• ELM XML Schemas – XML schemata defining a physical representation for the

serialization and sharing of expression logic specified in the ELM

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 30
© 2014-2017 Health Level Seven International. All rights reserved

Note that syntax highlighting is used throughout the specification to make the examples easier to

read. However, the highlighting is for example use only and is not intended to be a normative

aspect of the specification.

1.6 Alignment to CQF Artifact Sharing Use Case

The specific requirements implemented within this specification focus on the structure,

semantics, and encoding of expression logic representation within quality artifacts. These

requirements are directly tied to the Clinical Quality Framework Artifact Sharing Use Case. Full

material on this Use Case can be found here:

https://oncprojectracking.healthit.gov/wiki/display/TechLabSC/CQF+Use+Cases+-+Discovery

In particular, this specification enables the sharing use case by defining a high-level syntax

suitable for authors, a logical-level representation suitable for language processing applications,

and a mechanism for translation between them. The following diagram depicts how these

specifications will be used in the sharing use case:

FIGURE 1-C

1.6.1 Use Case Assumptions and Conditions

It is important for implementers to clearly understand the underlying environmental assumptions,

defined in Section 5 of the CQF Use Case document referenced in the previous section, to ensure

that these assumptions align to the implementation environment in which content will be

exchanged using a knowledge artifact. Failure to meet any of these assumptions could impact

implementation of the knowledge artifact.

https://oncprojectracking.healthit.gov/wiki/display/TechLabSC/CQF+Use+Cases+-+Discovery

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 31
© 2014-2017 Health Level Seven International. All rights reserved

1.7 Relationship to Other HL7 Specifications

The Clinical Quality Language specification is designed as a general purpose query language

suitable for describing clinical knowledge in a broad range of applications. As such, it has

relationships to, and can be used by, several other HL7 specifications, as explained in the sections

that follow.

1.7.1 Health Quality Measure Format (HQMF)

Health Quality Measure Format is an HL7 V3 Standard for the representation of electronic

Clinical Quality Measures (eCQMs). HQMF uses a conceptual model of clinical information

called Quality Data Model (QDM) to represent patient information in population criteria for the

measure. QDM originally (and through version 4.3) also included an expression language for use

in eCQMs. Clinical Quality Language is capable of providing more precise and flexible

semantics and HQMF-based eCQMs are in the process of transitioning to use Clinical Quality

Language.

1.7.2 Clinical Decision Support Knowledge Artifact Specification (KAS)

The Knowledge Artifact Specification is an HL7 Standard for the representation of clinical

decision support artifacts such as order sets, documentation templates, and event-condition-action

rules. The original version (and through release 1.2) of that specification included an XML-based

syntax for encoding the logic involved in the knowledge artifacts. The Expression Logical Model

defined by this specification is a derivative of that XML-based syntax, and in release 1.3 of KAS,

the syntax was updated to reference this specification.

1.7.3 Fast Healthcare Interoperability Resources (FHIR)

FHIR is an HL7 standard for enabling healthcare interoperability by defining a framework for

reliable data exchange. The Clinical Reasoning Module of FHIR describes how Clinical Quality

Language can be used within FHIR to represent the logic involved in knowledge artifacts.

1.7.4 FHIRPath

FHIRPath is an HL7 specification for a path-based navigation and extraction language, somewhat

like XPath. CQL is a superset of FHIRPath, meaning that any valid FHIRPath expression is also

a valid CQL expression. This allows CQL to easily express path navigation in hierarchical data

models. For more information, see the Using FHIRPath topic in the Developer’s Guide.

1.8 Organization of this Specification

The organization of this specification follows the outline of the perspectives discussed in the

Approach section—conceptual, logical, and physical. Below is a listing of the chapters with a

short summary of the content of each.

Chapter 1 – Introduction provides introductory and background material for the specification.

Chapter 2 – Author’s Guide provides a high-level discussion of the Clinical Quality Language

syntax. This discussion is a self-contained introduction to the language targeted at clinical quality

authors.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 32
© 2014-2017 Health Level Seven International. All rights reserved

Chapter 3 – Developer’s Guide provides a more in-depth look at the Clinical Quality Language

targeted at developers familiar with typical development languages such as Java, C#, and SQL.

Chapter 4 – Logical Specification provides a complete description of the elements that can be

used to represent quality logic. Note that Chapters 2 and 3 describe the same functional

capabilities of the language, and that anything that can be expressed in one mechanism can be

equivalently expressed in the other.

Chapter 5 – Language Semantics describes the intended semantics of the language, covering

topics such as data layer integration and expected run-time behavior.

Chapter 6 – Translation Semantics describes the mapping between CQL and ELM, as well as

outlines for how to perform translation from CQL to ELM, and vice versa.

Chapter 7 – Physical Representation is reference documentation for the XML schema used to

persist ELM.

Appendix A – CQL Syntax Formal Specification discusses the ANTLR4 grammar for the

Clinical Quality Language.

Appendix B – CQL Reference provides a complete reference for the types and operators

available in CQL, and is intended to be used by authors and developers alike.

Appendix C – Reference Implementations provides information about where to find reference

implementations for a CQL-ELM translator, a CQL Execution Framework for JavaScript, and

other related tooling.

Appendix D – References

Appendix E – Acronyms

Appendix F – Glossary

Appendix G – Formatting Conventions

Appendix H – Timing Interval Calculation Examples

Appendix I – FHIRPath Function Translation

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 33
© 2014-2017 Health Level Seven International. All rights reserved

2 AUTHOR’S GUIDE

This chapter introduces the high-level syntax for the Clinical Quality Language focused on

measure and decision support authors. This syntax provides a human-readable, yet precise

mechanism for expressing logic in both the measurement and improvement domains of clinical

quality.

The syntax, or structure, of CQL is built from several basic elements called tokens. These tokens

are symbols, such as + and *, keywords, such as define and from, literals, such as 5 and 'active',

and identifiers, such as Person and "Inpatient Encounters".

Statements of CQL are built up by combining these basic elements, separated by whitespace

(spaces, tabs, and returns), to produce language elements. The most basic of these language

elements is an expression, which is any statement of CQL that returns a value.

Expressions are built by combining terms, such as literals and identifiers, using operators, either

symbolic operators, such as + and -, operator phrases such as and and exists, or named operators

called functions, such as First() and AgeInYears().

At the highest level, CQL is organized around the concept of a library, which can be thought of

as a container for artifact logic. Libraries contain declarations which specify the items the library

contains. The most important of these declarations is the named expression, which is the basic

unit of logic definition in CQL.

In the sections that follow, the various constructs introduced above will be discussed in more

detail, beginning with the kinds of declarations that can be made in a CQL library, and then

moving through the various ways that clinical information is referenced and queried within CQL,

an overview of the operators available in CQL, and ending with a detailed walkthrough of

authoring specific quality artifacts using a running example.

Note that throughout the discussion, readers may wish to refer to Appendix B – CQL Reference

for more detailed discussion of particular concepts.

2.1 Declarations

All the constructs that can be expressed within CQL are packaged in a container called a library.

Libraries provide a convenient unit for the definition, versioning, and distribution of logic. For

simplicity, libraries in CQL correspond directly with a single file.

Libraries in CQL provide the overall packaging for CQL definitions. Each library allows a set of

declarations to provide information about the library as well as to define constructs that will be

available within the library.

Libraries can contain any or all of the following constructs:

Construct Description

library Header information for the library, including the name and version, if any.

using Data model information, specifying that the library may access types from the
referenced data model.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 34
© 2014-2017 Health Level Seven International. All rights reserved

include Referenced library information, specifying that the library may access constructs
defined in the referenced library.

codesystem Codesystem information, specifying that logic within the library may reference the
specified codesystem by the given name.

valueset Valueset information, specifying that logic within the library may reference the
specified valueset by the given name.

code Code information, specifying that logic within the library may reference the
specified code by the given name.

concept Concept information, specifying that logic within the library may reference the
specified concept by the given name.

parameter Parameter information, specifying that the library expects parameters to be
supplied by the evaluating environment.

context Patient/population context, specifying the overall context for the statements that
follow.

define The basic unit of logic within a library, a define statement introduces a named
expression that can be referenced within the library, or by other libraries.

function Libraries may also contain function definitions. These are most often used as part
of shared libraries.

TABLE 2-A

The following sections discuss these constructs in more detail.

2.1.1 Library

The library declaration specifies both the name of the library and an optional version for the

library. The library name is used as an identifier to reference the library from other CQL libraries,

as well as eCQM and CDS artifacts. A library can have at most one library declaration.

The following example illustrates the library declaration:

library CMS153_CQM version '2'

The above declaration names the library with the identifier CMS153_CQM and specifies the version

'2'.

2.1.2 Data Models

A CQL library can reference zero or more data models with using declarations. These data

models define the structures that can be used within retrieve expressions in the library.

For more information on how these data models are used, see the Retrieve section.

The following example illustrates the using declaration:

using QUICK

The above declaration specifies that the QUICK model will be used as the data model within the

library.

If necessary, a version specifier can be provided to indicate which version of the data model

should be used.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 35
© 2014-2017 Health Level Seven International. All rights reserved

2.1.3 Libraries

A CQL library can reference zero or more other CQL libraries with include declarations.

Components defined within these included libraries can then be referenced within the library by

using the locally assigned name for the library.

For more information on libraries, refer to the Using Libraries to Share Logic section.

The following example illustrates an include declaration:

include CMS153_Common version '2' called Common

Components defined in the CMS153_Common library, version 2, can now be referenced using the

assigned name of Common. For example:

define SexuallyActive:
 exists (Common.ConditionsIndicatingSexualActivity)
 or exists (Common.LaboratoryTestsIndicatingSexualActivity)

This expression references ConditionsIndicatingSexualActivity and

LaboratoryTestsIndicatingSexualActivity defined in the CMS153_Common library using the local

alias Common.

The syntax used to reference these expressions is a qualified identifier consisting of two parts.

The qualifier, Common, and the identifier, ConditionsIndicatingSexualActivity, separated by a dot

(.).

The called clause of the include declaration is optional, and if omitted, the library is referenced

by the identifier.

2.1.4 Terminology

A CQL library may contain zero or more named valuesets using the valueset declaration. A

valueset declaration specifies a local identifier that represents a valueset and can be used

anywhere within the library that a valueset is expected.

The following example illustrates a valueset declaration:

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2'

This definition establishes the local identifier "Female Administrative Sex" as a reference to the

external identifier for the valueset, an Object Identifier (OID) in this case:

'2.16.840.1.113883.3.560.100.2'. The external identifier need not be an OID, it may be a

uniform resource identifier (URI), or any other identification system. CQL does not interpret the

external id, it only specifies that the external identifier be a string that can be used to uniquely

identify the valueset within the implementation environment.

This valueset definition can then be used within the library wherever a valueset can be used:

define InDemographic: Patient.gender in "Female Administrative Sex"

The above examples define the InDemographic expression as true for patients whose Gender is a

code in the valueset identified by "Female Administrative Sex".

Note that the name of the valueset uses double quotes, in contrast to the string representation of

the OID for the valueset, which uses single quotes. Single quotes are used to build arbitrary

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 36
© 2014-2017 Health Level Seven International. All rights reserved

strings in CQL; double quotes are used to represent names of constructs such as valuesets and

expression definitions.

Note also that the local identifier for a valueset is user-defined and not required to match the

actual name of the valueset identified within the external valueset repository. Good practice

would dictate that the names should at least be conceptually similar, but CQL makes no

prescription either way.

In addition, CQL libraries may contain code systems, codes, and concepts. For more information

about terminologies as values within CQL, refer to the Clinical Values section.

2.1.5 Parameters

A CQL library can define zero or more parameters. Each parameter is defined with the elements

listed in the following table:

Element Description

Name A unique identifier for the parameter within the library

Type The type of the parameter – Note that the type is only required if no default value
is provided. Otherwise, the type of the parameter is determined based on the
default value.

Default Value An optional default value for the parameter

TABLE 2-B

The parameters defined in a library may be referenced by name in any expression within the

library. When expressions in a CQL library are evaluated, the values for parameters are provided

by the environment. For example, a library that defines criteria for a quality measure may define

a parameter to represent the measurement period:

parameter MeasurementPeriod
 default Interval[@2013-01-01T00:00:00.0, @2014-01-01T00:00:00.0)

Note the syntax for the default here is called an interval selector and will be discussed in more

detail in the section on 2.4.5Interval Values.

This parameter definition can now be referenced anywhere within the CQL library:

define InDemographic:
 AgeInYearsAt(start of MeasurementPeriod) >= 16
 and AgeInYearsAt(start of MeasurementPeriod) < 24

The above example defines the InDemographic expression as patients whose age at the start of the

MeasurementPeriod was at least 16 and less than 24.

The default value for a parameter is optional, but if no default is provided, the parameter must

include a type specifier:

parameter MeasurementPeriod Interval<DateTime>

If a parameter definition does not indicate a default value, the parameter is considered required,

meaning that a value must be supplied by the evaluation environment, typically as part of the

evaluation request.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 37
© 2014-2017 Health Level Seven International. All rights reserved

2.1.6 Context

The context declaration defines the overall context for statements within the language. CQL

supports two contexts:

Context Description

Patient The Patient context specifies that expressions should be
interpreted with reference to a single patient.

Population The Population context specifies that expressions should be
interpreted with reference to the entire population of patients.

TABLE 2-C

The following example illustrates the use of the Patient context:

context Patient

define InDemographic:
 AgeInYearsAt(start of MeasurementPeriod) >= 16
 and AgeInYearsAt(start of MeasurementPeriod) < 24
 and Patient.gender in "Female Administrative Sex"

Because the context has been established as Patient, the expression has access to patient-specific

concepts such as the AgeInYearsAt() operator and the Patient.gender attribute. Note that the

attributes available in the Patient context are defined by the data model in use.

A library may contain zero or more context statements, with each context statement establishing

the context for subsequent statements in the library. When no context is specified, the default

context is Patient.

Effectively, the statement context Patient defines an expression named Patient that returns the

patient data for the current patient, as well as restricts the information that will be returned from a

retrieve to a single patient, as opposed to all patients. For more information on context, refer to

the Retrieve Context discussion below.

2.1.7 Statements

A CQL Library can contain zero or more define statements describing named expressions that

can be referenced either from other expressions within the same library or by containing quality

and decision support artifacts.

The following example illustrates a simple define statement:

define InpatientEncounters:
 [Encounter: "Inpatient"] E
 where E.length <= 120 days
 and E.period ends during MeasurementPeriod

This example defines the InpatientEncounters expression as Encounter events whose code is in

the "Inpatient" valueset, whose length is less than or equal to 120 days, and whose period

ended (i.e. patient was discharged) during MeasurementPeriod.

Note that the use of terms like Encounter, length, and period, as well as which code attribute is

used to compare with the valueset, are defined by the data model being used within the library;

they are not defined by CQL.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 38
© 2014-2017 Health Level Seven International. All rights reserved

For more information on the use of define statements, refer to the Using Define Statements

section.

2.2 Retrieve

The retrieve declaration is the central construct for accessing clinical information within CQL.

The result of a retrieve is always a list of some type of clinical data, based on the type described

by the retrieve and the context (Patient or Population) in which the retrieve is evaluated.

The retrieve in CQL has two main parts: first, the type part, which identifies the type of data that

is to be retrieved; and second, the filter part, which optionally provides filtering information

based on specific types of filters common to most clinical data.

Note that the retrieve only introduces data into an expression; operations for further filtering,

shaping, computation, and sorting will be discussed in later sections.

2.2.1 Clinical Statement Structure

The retrieve expression is a reflection of the idea that clinical data in general can be viewed as

clinical statements of some type as defined by the model. The type of the clinical statement

determines the structure of the data that is returned by the retrieve, as well as the semantics of the

data involved.

The type may be a general category, such as a Condition, Procedure, or Encounter, or a more

specific instance such as an ImagingProcedure, or a LaboratoryTest. The data model defines the

available types that may be referenced by a retrieve.

In the simplest case, a retrieve specifies only the type of data to be retrieved. For example:

[Encounter]

Assuming the default context of Patient, this example retrieves all Encounter statements for a

patient.

2.2.2 Filtering with Terminology

In addition to describing the type of clinical statements, the retrieve expression allows the results

to be filtered using terminology, including valuesets, code systems, or by specifying a single

code. The use of codes within clinical data is ubiquitous, and most clinical statements have at

least one code-valued attribute. In addition, there is typically a “primary” code-valued attribute

for each type of clinical statement. This primary code is used to drive the terminology filter. For

example:

[Condition: "Acute Pharyngitis"]

This example requests only those Conditions whose primary code attribute is a code from the

valueset identified by "Acute Pharyngitis". The attribute used as the primary code attribute is

defined by the data model being used.

In addition, the retrieve expression allows the filtering attribute name to be specified:

[Condition: severity in "Acute Severity"]

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 39
© 2014-2017 Health Level Seven International. All rights reserved

This requests clinical statements that assert the presence of a condition with a severity in the

"Acute Severity" valueset.

Note that the terminology reference "Acute Severity" in the above examples is a valueset, but it

could also be a code system, or a specific code:

[Condition: severity in "Acute"]

Assuming there is a code declaration with the identifier "Acute", this example will return

conditions for the patient where the severity is equal to the "Acute" code.

2.2.3 Retrieve Context

Within the Patient context, the results of any given retrieve will always be scoped to a single

patient, as determined by the environment. For example, in a quality measure evaluation

environment, the Patient context may be the current patient being considered. In a clinical

decision support environment, the Patient context would be the patient for which guidance is

being sought.

By contrast, within the Population context, the results of any given retrieve will not be limited to

a single Patient. For example:

[Condition: "Acute Pharyngitis"] C where C.onsetDateTime during MeasurementPeriod

When evaluated within the Patient context, the above example returns "Acute Pharyngitis"

conditions that onset during MeasurementPeriod for the current patient only. In the Population

context, this example returns "Acute Pharyngitis" conditions that onset during MeasurementPeriod

for all patients.

Because context is associated with each declaration, it is possible for expressions defined in the

Patient context to reference expressions defined in the Population context and vice versa.

In a Population context, a reference to a Patient context expression results in the execution of that

expression for each patient in the population, and the implementation environment combines the

results.

If the result type of the Patient context expression is not a list, the result of accessing it from a

Population context will be a list with elements of the type of the Patient context expression. For

example:

context Patient

define InInitialPopulation:
 AgeInYearsAt(@2013-01-01) >= 16 and AgeInYearsAt(@2013-01-01) < 24

context Population

define PopulationCount:
 Count(InInitialPopulation)

In the above example, the PopulationCount expression returns the number of patients for which

the InInitialPopulation expression evaluated to true.

If the result type of the Patient context expression is a list, the result will be a list of the same

type, but with the results of the evaluation for each patient in the population combined into a

single list.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 40
© 2014-2017 Health Level Seven International. All rights reserved

In a Patient context, a reference to a Population context expression results in the evaluation of the

Population context expression, and the result type is unaffected.

2.3 Queries

Beyond the retrieve expression, CQL provides a query construct that allows the results of

retrieves to be further filtered, shaped, and extended to enable the expression of arbitrary clinical

logic that can be used in quality and decision support artifacts.

Although similar to a retrieve in that a query will typically result in a list of patient information, a

query is a more general construct than a retrieve. Retrieves are by design restricted to a particular

set of criteria that are commonly used when referencing clinical information, and specifically

constructed to allow implementations to easily build data access layers suitable for use with

CQL. For more information on the design of the retrieve construct, refer to Clinical Data

Retrieval in Quality Artifacts.

The query construct has a primary source and four main clauses that each allow for different

types of operations to be performed:

Clause Operation

Relationship (with/without) Allows relationships between the primary source and other
clinical information to be used to filter the result.

Where The where clause allows conditions to be expressed that filter
the result to only the information that meets the condition.

Return The return clause allows the result set to be shaped as needed,
removing elements, or including new calculated values.

Sort The sort clause allows the result set to be ordered according to
any criteria as needed.

TABLE 2-D

Each of these clauses will be discussed in more detail in the following sections.

A query construct begins by introducing an alias for the primary source:

[Encounter: "Inpatient"] E

The primary source for this query is [Encounter: "Inpatient"], and the alias is E. Subsequent

clauses in the query must reference elements of this source by using this name.

Note that although the alias in this example is a single-letter abbreviation, E, it could also be a

longer abbreviation:

[Encounter: "Inpatient"] Enc

2.3.1 Filtering

The where clause allows the results of the query to be filtered by a condition that is evaluated for

each element of the query being filtered. If the condition evaluates to true for the element being

tested, that element is included in the result. Otherwise, the element is excluded from the

resulting list.

For example:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 41
© 2014-2017 Health Level Seven International. All rights reserved

[Encounter: "Inpatient"] E
 where duration in days of E.period >= 120

The alias E is used to access the period attribute of each encounter in the primary source. The

filter condition tests whether the duration of that range is at least 120 days.

The condition of a where clause is allowed to contain any arbitrary combination of operations of

CQL, so long as the overall result of the condition is boolean-valued. For example, the following

where clause includes multiple conditions on different attributes of the source:

[CommunicationRequest] C
 where C.mode = 'ordered'
 and C.sender.role = 'nurse'
 and C.recipient.role = 'doctor'
 and C.indication in "Fever"

Note that because CQL uses three-valued logic, the result of evaluating any given boolean-valued

condition may be unknown (null). For example, if the list of inpatient encounters from the first

example contains some elements whose period attribute is null, the result of the condition for

that element will not be false, but null, indicating that it is not known whether or not the

duration of the encounter was at least 120 days. For the purposes of evaluating a filter, only

elements where the condition evaluates to true are included in the result, effectively treating the

unknown results as false.

2.3.2 Shaping

The return clause of a CQL query allows the results of the query to be shaped. In most cases, the

results of a query will be of the same type as the primary source of the query. However, some

scenarios involve the need to extract only specific elements or to perform computations on the

data involved in each element. The return clause enables this type of query.

For example:

[Encounter: "Inpatient"] E
 return Tuple { id: E.identifier, lengthOfStay: duration in days of E.period }

This example returns a list of tuples (structured values), one for each inpatient encounter

performed, where each tuple consists of the id of the encounter as well as a lengthOfStay

element, whose value is calculated by taking the duration of the period for the encounter. Tuples

are discussed in detail in later sections.

2.3.3 Sorting

CQL queries can sort results in any order using the sort by clause. For example:

[Encounter: "Inpatient"] E sort by start of period

This example returns inpatient encounters, sorted by period.

Calculated values can also be used to determine the sort, ascending (asc) or descending (desc), as

in:

 [Encounter: "Inpatient"] E
 return Tuple { id: E.identifier, lengthOfStay: duration in days of E.period }
 sort by lengthOfStay desc

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 42
© 2014-2017 Health Level Seven International. All rights reserved

Note that the properties that can be specified within the sort clause are determined by the result

type of the query. In the above example, lengthOfStay can be referenced because it is introduced

in the return clause.

If no ascending or descending specifier is provided, the order is ascending.

If no sort clause is provided, the order of the result is undefined and may vary by implementation.

The sort clause may include multiple attributes, each with their own sort order:

[Encounter: "Inpatient"] E sort by start of period desc, identifier asc

Sorting is perfomed in the order in which the attributes are defined in the sort clause, so this

example sorts by period descending, then by identifier ascending.

A query may only contain a single sort clause, and it must always appear last in the query.

When the data being sorted includes nulls, they are sorted first, meaning they will appear at the

beginning of the list when the data is sorted ascending, and at the end of the list when the data is

sorted descending.

2.3.4 Relationships

In addition to filtering by conditions, some scenarios need to be able to filter based on

relationships to other sources. The CQL with and without clauses provide this capability. For

example:

[Encounter: "Ambulatory/ED Visit"] E
 with [Condition: "Acute Pharyngitis"] P
 such that P.onsetDateTime during E.period
 and P.abatementDate after end of E.period

This query returns "Ambulatory/ED Visit" encounters performed where the patient also has a

condition of "Acute Pharyngitis" that overlaps after the period of the encounter.

The without clause returns only those elements from the primary source that do not have a

specific relationship to another source. For example:

[Encounter: "Ambulatory/ED Visit"] E
 without [Condition: "Acute Pharyngitis"] P
 such that P.onsetDateTime during E.period
 and P.abatementDate after end of E.period

This query is the same as the previous example, except that only encounters that do not have

overlapping conditions of "Acute Pharyngitis" are returned. In other words, if the such that

condition evaluates to true (if the Encounter has an overlapping Condition of Acute Pharyngitis

in this case), then that Encounter is not included in the result.

A given query may include any number of with and without clauses in any order, but they must

all come before any where, return, or sort clauses.

Note that the such that condition of with and without clauses need not be based on timing

relationships, it may contain any arbitrary expression, so long as the overall result is boolean-

valued. For example:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 43
© 2014-2017 Health Level Seven International. All rights reserved

[MedicationDispense: "Warfarin"] D
 with [MedicationPrescription: "Warfarin"] P
 such that P.status = 'active'
 and P.identifier = D.authorizingPrescription.identifier

This example retrieves all dispense records for active prescriptions of Warfarin.

When multiple with or without clauses appear in a single query, the result will only include

elements that meet the such that conditions for all the relationship clauses. For example:

MeasurementPeriodEncounters E
 with Pharyngitis P
 such that Interval[P.onsetDateTime, P.abatementDateTime] includes E.period
 or P.onsetDateTime.value in E.period
 with Antibiotics A such that A.dateWritten 3 days or less after start of E.period

This example retrieves all the elements returned by the expression

MeasurementPeriodEncounters that have both a related Pharyngitis and Antibiotics result.

2.3.5 Full Query

The clauses described in the previous section must appear in the correct order to specify a valid

CQL query. The general order of clauses is:

primary-source alias

 with-or-without-clauses

 where-clause

 return-clause

 sort-clause

A query must contain an aliased primary source, but this is the only required clause.

A query may contain zero or more with or without clauses, but they must all appear before any

where, return, or sort clauses.

A query may contain at most one where clause, and it must appear after any with or without

clauses, and before any return or sort clauses.

A query may contain at most one return clause, and it must appear after any with or without or

where clauses, and before any sort clause.

A query may contain at most one sort clause, and it must be the last clause in the query.

For example:

[Encounter: "Inpatient"] E
 with [Condition: "Acute Pharyngitis"] P
 such that P.onsetDateTime during E.period
 and P.abatementDate after end of E.period
 where duration in days of E.period >= 120
 return Tuple { id: E.id, lengthOfStay: duration in days of E.period }
 sort by lengthOfStay desc

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 44
© 2014-2017 Health Level Seven International. All rights reserved

This query returns all "Inpatient" encounter events that have an overlapping condition of "Acute

Pharyngitis" and a duration of at least 120 days. For each such event, the result will include the

id of the event and the duration in days, and the results will be ordered by that duration

descending.

Note that the query construct in CQL supports other clauses that are not discussed here. For more

information on these, refer to Multi-Source Queries and Non-Retrieve Queries.

2.4 Values

CQL supports several categories of values:

• Simple values, such as strings, numbers, and dates

• Clinical values, such as quantities and valuesets

• Structured values (called tuples), such as Medications, Encounters, and Patients

• Lists, which can contain any number of elements of the same type

• Intervals, which define ranges of ordered values, such as numbers or dates

The result of evaluating any expression in CQL is a value of some type. For example, the

expression 5 results in the value 5 of type Integer. CQL is a strongly-typed language, meaning

that every value is of some type, and that every operation expects arguments of a particular type.

As a result, any given expression of CQL can be verified as meaningful, at least in terms of the

operations performed. For example, consider the following expression:

6 + 6

The expression involves the addition of values of type Integer, and so is a meaningful expression

of CQL. By contrast:

6 + 'active'

This expression involves the addition of a value of type Integer, 6, to a value of type String,

'active'. This expression is meaningless since CQL does not define addition for values of type

Integer and String.

However, there are cases where an expression is meaningful, even if the types do not match

exactly. For example, consider the following addition:

6 + 6.0

This expression involves the addition of a value of type Integer, and a value of type Decimal.

This is meaningful, but in order to infer the correct result type, the Integer value will be

implicitly converted to a value of type Decimal, and the Decimal addition operator will be used,

resulting in a value of type Decimal.

To ensure there can never be a loss of information, this implicit conversion will only happen

from Integer to Decimal, never from Decimal to Integer.

In the sections that follow, the various categories of values that can be represented in CQL will

be considered in more detail.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 45
© 2014-2017 Health Level Seven International. All rights reserved

2.4.1 Simple Values

CQL supports several types of simple values:

Value Examples

Boolean true, false

Integer 16, -28

Decimal 100.015

String 'pending', 'active', 'complete'

DateTime @2014-01-25,
@2014-01-25T14:30:14.559

Time @T12:00:00.0Z
@T14:30:14.559-07:00

TABLE 2-E

2.4.1.1 Boolean

The Boolean type in CQL supports the logical values true and false. These values are most often

encountered as the result of Comparison Operators, and can be combined with other boolean-

valued expressions using Logical Operators.

2.4.1.2 Integer

The Integer type in CQL supports the representation of whole numbers, positive and negative.

CQL supports a full set of Arithmetic Operators for performing computations involving whole

numbers.

In addition, any operation involving Decimals can be used with values of type Integer because

Integer values can always be implicitly converted to Decimal values.

2.4.1.3 Decimal

The Decimal type in CQL supports the representation of real numbers, positive and negative. As

with Integer values, CQL supports a full set of Arithmetic Operators for performing computations

involving real numbers.

2.4.1.4 String

String values within CQL are represented using single-quotes:

'active'

Note that if the value to be represented contains a single-quote, use a backslash to include it

within the string in CQL:

'patient\'s condition is normal'

2.4.1.5 DateTime and Time

CQL supports the representation of both DateTime and Time values.

DateTime values are used to represent an instant along the timeline, known to at least the year

precision, and potentially to the millisecond precision. DateTime values are specified using an at-

symbol (@) followed by an ISO-8601 textual representation of the DateTime value:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 46
© 2014-2017 Health Level Seven International. All rights reserved

@2014-01-25
@2014-01-25T14:30:14.559

Time values are used to represent a time of day, independent of the date. Time value must be

known to at least the hour precision, and potentially to the millisecond precision. Time values are

specified using at-symbol (@) followed by an ISO-8601 textual representation of the Time value:

@T12:00:00.0Z
@T14:30:14.559-07:00

Note that the Time value literal format is identical to the time value portion of the DateTime literal

format.

For both DateTime and Time values, timezone may be specified as either UTC time (Z), or as a

timezone offset. If no timezone is specified, the timezone of the evaluation request timestamp is

used.

FOR MORE INFORMATION ON THE USE OF DATE/TIME VALUES WITHIN CQL, REFER TO THE TABLE 2-J

Date/Time OPERATORS section.

Specifically, because DateTime and Time values may be specified to varying levels of precisions,

operations such as comparison and duration calculation may result in null, rather than the true or

false that would result from the same operation involving fully specified values. For a discussion

of the effect of imprecision on date/time operations, refer to the Comparing Dates and Times

section.

2.4.2 Clinical Values

In addition to simple values, CQL supports some types of values that are specific to the clinical

quality domain. For example, CQL supports codes, concepts, quantities, and valuesets.

2.4.2.1 Quantities

A quantity is a number with an associated unit. For example:

6 'gm/cm3'
80 'mm[Hg]'
3 months

CQL supports the following built-in units for time granularities:

years
months
weeks
days
hours
minutes
seconds
milliseconds

In addition, CQL supports any valid Unified Code for Units of Measure (UCUM) unit code using

the string representation of the UCUM code immediately following the numeric value, as shown

in the first example in this section. UCUM codes can be specified in the case-sensitive (c/s) or

case-insenstive form (c/i).

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 47
© 2014-2017 Health Level Seven International. All rights reserved

For quantities, number can be an integer or decimal. Note however that most operations

involving time-based quantities ignore the decimal portion of a time-based quantity.

For a discussion of the operations available for quantities, see the Quantity Operators section.

2.4.2.2 Code

The use of codes to specify meaning within clinical data is ubiquitous. CQL therefore supports a

top-level construct for dealing with codes using a structure called Code that is consistent with the

way terminologies are typically represented.

The Code type has the following elements:

Name Type Description

code String The identifier for the code.

display String A description of the code.

system String The identifier of the code system.

version String The version of the code system.

TABLE 2-F

In addition, CQL provides a Code literal that can be used to reference an existing code from a

specific code system:

Code '66071002' from "SNOMED-CT:2014" display 'Type B viral hepatitis'

The example specifies the code '66071002' from the previously defined "SNOMED-CT:2014"

codesystem, which specifies both the system and version of the resulting code.

Note that the display clause is optional. The above example references the code '66071002' from

the "SNOMED-CT:2014" code system.

2.4.2.3 Concept

Within clinical information, multiple terminologies can often be used to code for the same

concept. As such, CQL defines a top-level construct called Concept that allows for multiple codes

to be specified.

The Concept type has the following elements:

Name Type Description

codes List<Code> The list of equivalent codes representing the

concept.

display String A description of the concept.

TABLE 2-G

Note that the semantics of Concept are such that the codes within a given concept should all be

semantically equivalent at the code level, but CQL itself will make no attempt to ensure that is

the case. Concepts should never be used as a surrogate for proper valueset definition.

The following example illustrates the use of a Concept literal:

Concept
{

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 48
© 2014-2017 Health Level Seven International. All rights reserved

 Code '66071002' from "SNOMED-CT:2014",
 Code 'B18.1' from "ICD-9-CM:2014"
} display 'Type B viral hepatitis'

This example constructs a Concept with display 'Type B viral hepatitis' and code of

'66071002'.

2.4.2.4 Valuesets

As a value, a valueset is simply a list of Code values. However, CQL allows valuesets to be used

without reference to the codes involved by declaring valuesets as a special type of value within

the language.

The following example illustrates some typical valueset declarations:

valueset "Acute Pharyngitis": '2.16.840.1.113883.3.464.1003.102.12.1011'
valueset "Acute Tonsillitis": '2.16.840.1.113883.3.464.1003.102.12.1012'
valueset "Ambulatory/ED Visit": '2.16.840.1.113883.3.464.1003.101.12.1061'

Each valueset declaration defines a local identifier that can be used to reference the valueset

within the library, as well as the global identifier for the valueset, typically an object identifier

(OID) or uniform resource identifier (URI).

These valueset identifiers can then be used throughout the library. For example:

define Pharyngitis: [Condition: "Acute Pharyngitis"]

This example defines Pharyngitis as any Condition where the code is in the "Acute Pharyngitis"

valueset.

Whenever a valueset reference is actually evaluated, the resulting expansion set, or list of codes,

depends on the binding specified by the valueset declaration. By default, all valueset bindings are

dynamic, meaning that the expansion set should be constructed using the most current published

version of the valueset.

However, CQL also allows for static bindings which allow two components to be set:

1. Version – The version of the valueset to be referenced, specified as a string.

2. Code Systems – A list of code systems referenced by the valueset definition.

If the binding specifies a valueset version, then the expansion set must be derived from that

specific version. This does not restrict the code system versions to be used, therefore more than

one expansion set is possible.

If any code systems are specified, they indicate which version of the particular code system

should be used when constructing the expansion set. As with valuesets, if no code system version

is specified, the expansion set should be constructed using the most current published version of

the codesystem. Note that if the external valueset definition explicitly states that a particular

version of a code system should be used, then it is an error if the code system version specified in

the CQL static binding does not match the code system version specified in the external valueset

definition. To create a reliable static binding where only one value set expansion set is possible,

both the value set version AND the code system versions should be specified.

The following example illustrates the use of static binding based only on the version of the

valueset:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 49
© 2014-2017 Health Level Seven International. All rights reserved

valueset "Diabetes": '2.16.840.1.113883.3.464.1003.103.12.1001' version '20140501'

The next example illustrates a static binding based on both the version of the valueset, as well as

the versions of the code systems within the valueset:

codesystem "SNOMED-CT:2013-09": '2.16.840.1.113883.6.96' version '2031-09'
codesystem "ICD-9-CM:2014": '2.16.840.1.113883.6.103' version '2014'
codesystem "ICD-10-CM:2014": '2.16.840.1.113883.6.90' version '2014'
valueset "Diabetes": '2.16.840.1.113883.3.464.1003.103.12.1001' version '20140501'
 codesystems ("SNOMED-CT:2013-09", "ICD-9-CM:2014", "ICD-10-CM:2014")

See the Terminology Operators section for more information on the use of valuesets within CQL.

2.4.2.5 Codesystems

In addition to their use as part of valueset definitions, codesystem definitions can be referenced

directly within an expression, just like valueset definitions.

See the Terminology Operators section for more information on the use of codesystems within

CQL.

2.4.3 Structured Values (Tuples)

Structured values, or tuples, are values that contain named elements, each having a value of some

type. Clinical information such as a Medication, a Condition, or an Encounter is represented

using tuples.

For example, the following expression retrieves the first Condition with a code in the "Acute

Pharyngitis" valueset for a patient:

define FirstPharyngitis:
 First([Condition: "Acute Pharyngitis"] C sort by C.onsetDateTime desc)

The values of the elements of a tuple can be accessed using a dot qualifier (.) followed by the

name of the element:

define PharyngitisOnSetDateTime: FirstPharyngitis.onsetDateTime

Tuples can also be constructed directly using a tuple selector:

define Info: Tuple { Name: 'Patrick', DOB: @2014-01-01 }

If the tuple is of a specific type, the name of the type can be used instead of the Tuple keyword:

define PatientExpression: Patient { Name: 'Patrick', DOB: @2014-01-01 }

If the name of the type is specified, the tuple selector may only contain elements that are defined

on the type, and the expressions for each element must evaluate to a value of the defined type for

the element.

Note that tuples can contain other tuples, as well as lists:

define Info:
 Tuple
 {
 Name: 'Patrick',
 DOB: @2014-01-01,
 Address: Tuple { Line1: '41 Spinning Ave', City: 'Dayton', State: 'OH' },

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 50
© 2014-2017 Health Level Seven International. All rights reserved

 Phones: { Tuple { Number: '202-413-1234', Use: 'Home' } }
 }

Accordingly, element access can nest as deeply as necessary:

Info.Address.City

This accesses the City element of the Address element of Info. Lists can be traversed within

element accessors using the list indexer ([]):

Info.Phones[0].Number

This accesses the Number element of the first element of the Phones list within Info.

In addition, to simplify path traversal for models that make extensive use of list-valued attributes,

the indexer can be omitted:

Info.Phones.Number

The result of this invocation is a list containing the Number elements of all the Phones.

2.4.3.1 Missing Information

Because clinical information is often incomplete, CQL provides a special construct, null, to

represent an unknown or missing value or result. For example, the admission date of an encounter

may not be known. In that case, the result of accessing the admissionDate element of the

Encounter tuple is null.

In order to provide consistent behavior in the presence of missing information, CQL defines null

behavior for all operations. For example, consider the following expression:

define PharyngitisOnSetDateTime: FirstPharyngitis.onsetDateTime

If the onsetDateTime is not present, the result of this expression is null. Furthermore, nulls will in

general propagate, meaning that if the result of FirstPharyngitis is null, the result of accessing

the onsetDateTime element is also null.

For more information on missing information, see the Nullological Operators section.

2.4.4 List Values

CQL supports the representation of lists of any type of value (including other lists), but all the

elements within a given list must be of the same type.

Lists can be constructed directly, as in:

{ 1, 2, 3, 4, 5 }

But more commonly, lists of tuples are the result of retrieve expressions. For example:

[Condition: code in "Acute Pharyngitis"]

This expression results in a list of tuples, where each tuple’s elements are determined by the data

model in use.

Lists in CQL use zero-based indexes, meaning that the first element in a list has index 0. For

example, given the list of integers:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 51
© 2014-2017 Health Level Seven International. All rights reserved

{ 6, 7, 8, 9, 10 }

The first element is 6 and has index 0, the second element is 7 and has index 1, and so on.

Note that in general, clinical data may be expected to contain various types of collections such as

sets, bags, lists, and arrays. For simplicity, CQL deals with all collections using the same

collection type, the list, and provides operations to enable dealing with different collection types.

For example, a set is a list where each element is unique, and any given list can be converted to a

set using the distinct operator.

For a description of the distinct operator, as well as other operations that can be performed with

lists, refer to the List Operators section.

2.4.5 Interval Values

CQL supports the representation of intervals, or ranges, of values of various types. In particular,

intervals of date/time and ranges of integers and reals.

Intervals in CQL are represented by specifying the low and high points of the interval and

whether the boundary is inclusive (meaning the boundary point is part of the interval) or

exclusive (meaning the boundary point is excluded from the interval). Following standard

mathematics notation, inclusive (closed) boundaries are indicated with square brackets, and

exclusive (open) boundaries are indicated with parentheses. For example:

Interval[3, 5)

This expression results in an interval that contains the integers 3 and 4, but not 5.

Interval[3.0, 5.0)

This expression results in an interval that contains all the real numbers >= 3.0 and < 5.0.

Intervals can be constructed based on any type that supports unique and ordered comparison. For

example:

Interval[@2014-01-01T00:00:00.0, @2015-01-01T00:00:00.0)

This expression results in an interval that begins at midnight on January 1, 2014, and ends just

before midnight on January 1, 2015.

Note that the ending boundary must be greater than or equal to the starting boundary to construct

a valid interval. Attempting to specify an invalid interval will result in a run-time error. For

example:

Interval[1, -1] // Invalid interval, this will result in an error

It is valid to construct an interval with the same start and end boundary, so long as the boundaries

are inclusive:

Interval[1, 1] // Unit interval containing only the point 1
Interval[1, 1) // Invalid interval, conflicting to say it both includes and excludes 1

Such an interval contains only a single point and can be called a unit interval. For unit intervals,

the operator can be used to extract the single point from the interval.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 52
© 2014-2017 Health Level Seven International. All rights reserved

point from Interval[1, 1] // Results in 1
point from Interval[1, 5] // Invalid extractor, this will result in an error

Attempting to use on a non-unit-interval will result in a run-time error.

2.5 Operations

In addition to retrieving clinical information about a patient or population, the expression of

clinical knowledge artifacts often involves the use of various operations such as comparison,

logical operations such as and and or, computation, and so on. To ensure that the language can

effectively express a broad range of knowledge artifacts, CQL includes a comprehensive set of

operations. In general, these operations are all expressions in that they can be evaluated to return

a value of some type, and the type of that return value can be determined by examining the types

of values and operations involved in the expression.

This means that for each operation, CQL defines the number and type of each input (argument) to

the operation and the type of the result, given the types of each argument.

The following sections define the operations that can be used within CQL, divided into

semantically related categories.

2.5.1 Comparison Operators

The most basic operation in CQL involves comparison of two values. This is accomplished with

the built-in comparison operators:

Operator Name Description

= Equality Returns true if the arguments are the same value

!= Inequality Returns true if the arguments are not the same value

> Greater than Returns true if the left argument is greater than the right argument

< Less than Returns true if the left argument is less than the right argument

>= Greater than or
equal

Returns true if the left argument is greater than or equal to the right
argument

<= Less than or
equal

Returns true if the left argument is less than or equal to the right
argument

between Returns true if the first argument is greater than or equal to the
second argument, and less than or equal to the third argument

~ Equivalent Returns true if the arguments are the same value, or are both
unknown

!~ Inequivalent Returns true if the arguments are not equivalent

TABLE 2-H

In general, the equality and inequality operators can be used on any type of value within CQL,

but both arguments must be the same type. For example, the following equality comparison is

legal, and returns true:

5 = 5

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 53
© 2014-2017 Health Level Seven International. All rights reserved

However, the following equality comparison is invalid because numbers and strings cannot be

meaningfully compared:

5 = 'completed'

For decimal values, equality is defined to ignore trailing zeroes.

For date/time values, equality is defined to account for the possibility that the date/time values

involved are specified to varying levels of precision. For a complete discussion of this behavior,

refer to Comparing Dates and Times.

For structured values, equality returns true if the values being compared are the same type

(meaning they have the same types of elements) and the values for each element are the same

value. For example, the following comparison returns true:

Tuple { id: 'ABC-001', name: 'John Smith' } = Tuple { id: 'ABC-001', name: 'John Smith' }

For lists, equality returns true if the lists contain the same elements in the same order. For

example, the following lists are equal:

{ 1, 2, 3, 4, 5 } = { 1, 2, 3, 4, 5 }

And the following lists are not equal:

{ 1, 2, 3, 4, 5 } != { 5, 4, 3, 2, 1 }

Note that in the above example, if the second list was sorted ascending prior to the comparison,

the result would be true.

For intervals, equality returns true if the intervals use the same point type and cover the same

range. For example:

[1..5] = [1..6)

This returns true because the intervals cover the same set of points, 1 through 5.

The relative comparison operators (>, >=, <, <=) can be used on types of values that have a

natural ordering such as numbers, strings, and dates.

The between operator is shorthand for comparison of an expression against an upper and lower

bound. For example:

4 between 2 and 8

This expression is equivalent to:

4 >= 2 and 4 <= 8

For all the comparison operators, the result type of the operation is Boolean, meaning they may

result in true, false, or null (meaning unknown). In general, if either or both of the values being

compared is null, the result of the comparison is null.

This is true for all the comparison operators except for equivalent (~) and not equivalent (!~).

The equivalent operator is the same as equality, except that it returns true if both of the

arguments are null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 54
© 2014-2017 Health Level Seven International. All rights reserved

2.5.2 Logical Operators

Combining the results of comparisons and other boolean-valued expressions is essential and is

performed in CQL using the following logical operations:

Operator Description

and Logical conjunction

or Logical disjunction

xor Exclusive logical disjunction

not Logical negation

TABLE 2-I

The following examples illustrate some common uses of logical operators:

AgeInYears() >= 18 and AgeInYears() < 24
INRResult > 5 or DischargedOnOverlapTherapy

Note that all these operators are defined using three-valued logic, which is defined specifically to

ensure that certain well-established relationships that hold in standard Boolean (two-valued) logic

also hold. The complete semantics for each operator are described in the Logical Operators

section of Appendix B – CQL Reference.

2.5.3 Arithmetic Operators

The expression of clinical logic often involves numeric computation, and CQL provides a

complete set of arithmetic operations for expressing computational logic. In general, these

operators have the standard semantics for arithmetic operators, with the general caveat that unless

otherwise stated in the documentation for a specific operation, if any argument to an operation is

null, the result is null.

The following table lists the arithmetic operations available in CQL:

Operator Name Description

+ addition Performs numeric addition of its arguments

- subtraction Performs numeric subtraction of its arguments

* multiply Performs numeric multiplication of its arguments

/ divide Performs numeric division of its arguments

div truncated divide Performs integer division of its arguments

mod modulo Computes the remainder of the integer division of its arguments

Ceiling Returns the first integer greater than or equal to its argument

Floor Returns the first integer less than or equal to its argument

Truncate Returns the integer component of its argument

Abs Returns the absolute value of its argument

- negate Returns the negative value of its argument

Round Returns the nearest numeric value to its argument, optionally
specified to a number of decimal places for rounding

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 55
© 2014-2017 Health Level Seven International. All rights reserved

Ln natural logarithm Computes the natural logarithm of its argument

Log logarithm Computes the logarithm of its first argument, using the second
argument as the base

Exp exponent Raises e to the power given by its argument

^ exponentiation Raises the first argument to the power given by the second
argument

TABLE 2-J

2.5.4 Date/Time Operators

Operations on date and time data are an essential component of expressing clinical knowledge,

and CQL provides a complete set of date/time operators. These operators broadly fall into five

categories:

• Construction – Building or selecting specific date/time values

• Comparison – Comparing date/time values

• Extraction – Extracting specific components from date/time values

• Arithmetic – Performing date/time arithmetic

• Duration – Computing durations between date/time values

2.5.4.1 Constructing Date/Time Values

In addition to the literals described in the DateTime and Time section, the DateTime and Time

operators allow for the construction of specific date/time values based on the values for their

components. For example:

DateTime(2014, 7, 5)
DateTime(2014, 7, 5, 4, 0, 0, 0, -7)

The first example constructs the DateTime July 5, 2014. The second example constructs a

DateTime of July 5, 2014, 04:00:00.0 UTC-07:00 (Mountain Standard Time).

The DateTime operator takes the following arguments:

Name Type Description

Year Integer The year component of the datetime

Month Integer The month component of the datetime

Day Integer The day component of the datetime

Hour Integer The hour component of the datetime

Minute Integer The minute component of the datetime

Second Integer The second component of the datetime

Millisecond Integer The millisecond component of the datetime

Timezone Offset Decimal The timezone offset component of the datetime (in hours)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 56
© 2014-2017 Health Level Seven International. All rights reserved

TABLE 2-K

At least one component other than timezone offset must be provided, and for any particular

component that is provided, all the components of broader precision must be provided. For

example:

DateTime(2014)
DateTime(2014, 7)
DateTime(2014, 7, 11)
DateTime(null, null, 11) // invalid

The first three expressions above are valid, constructing dates with a specified precision of years,

months, and days, respectively. However, the fourth expression is invalid, because it attempts to

create a date with a day but no year or month component.

The only component that is ever defaulted is the timezone component. If no timezone component

is supplied, the timezone component is defaulted to the timezone of the timestamp associated

with the evaluation request.

The Time operator takes the following arguments:

Name Type Description

Hour Integer The hour component of the datetime

Minute Integer The minute component of the datetime

Second Integer The second component of the datetime

Millisecond Integer The millisecond component of the datetime

Timezone Offset Decimal The timezone offset component of the datetime

TABLE 2-L

As with the DateTime operator, at least the first component must be supplied, and for any

particular component that is provided, all components of broader precision must be provided. If

timezone is not supplied, it will be defaulted to the timezone of the timestamp associated with the

evaluation request.

In addition to the ability to construct specific dates and times using components, CQL supports

three operators for retrieving the current date and time:

Operator Description

Now Returns the date and time of the start timestamp associated with the evaluation
request

Today Returns the date (with no time components) of the start timestamp associated with the
evaluation request

TimeOfDay Returns the time-of-day of the start timestamp associated with the evaluation request

TABLE 2-M

The current date and time operators are defined based on the timestamp of the evaluation request

for two reasons:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 57
© 2014-2017 Health Level Seven International. All rights reserved

1. The operations will always return the same value during any given evaluation request,

ensuring that the result of an expression containing Now() or Today() will always return

the same result within the same evaluation (determinism).

2. The operations are based on the timestamp associated with the evaluation request,

allowing the evaluation to be performed with the same time zone information as the data

delivered with the evaluation request.

By defining the date construction operators in this way, most clinical logic can safely ignore

timezone information, and the logic will be evaluated with the expected semantics. However, if

timezone information is relevant to a particular calculation, it can still be accessed as a

component of each datetime value.

In addition, all operations on dates and times are defined to take timezone information into

account, ensuring that datetime operations perform correctly and consistently.

In addition to date and time values, CQL supports the construction of time durations using the

name of the precision as the unit for a quantity. For example:

3 months
1 year
5 minutes

Valid time duration units are:

year
years
month
months
week
weeks
day
days
hour
hours
minute
minutes
second
seconds
millisecond
milliseconds

Note that CQL supports both plural and singular duration units to allow for the most natural

expression but that no attempt is made to enforce singular or plural usage.

Note also that the UCUM time-period units can be used when expressing duration quantities.

2.5.4.2 Comparing Dates and Times

CQL supports comparison of date/time values using the expected comparison operators. Note

however, that when date/time values are not specified completely, the result may be null,

depending on whether there is enough information to make an accurate determination. In general,

CQL treats date/time values that are only known to some specific precision as an uncertainty over

the range at the first unspecified precision. For example:

DateTime(2014)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 58
© 2014-2017 Health Level Seven International. All rights reserved

This value can be read as “some date within the year 2014”, because only the year component is

known. Applying these semantics yields the intuitively correct result when comparing date/time

values with varying levels of precision.

DateTime(2012) < DateTime(2014, 2, 15)

This example returns true because even though the month and day of the first date are unknown,

the year, 2012, is known to be less than the year of the second date, 2014. By contrast:

DateTime(2015) < DateTime(2014, 2, 15)

The result in this example is false because the year, 2015, is not less than the year of the second

date. And finally:

DateTime(2014) < DateTime(2014, 2, 15)

The result in this example is null because the first date could be any date within the year 2014, so

it could be less than the second date, but it could be greater.

As with all date/time calculations, comparisons are performed respecting the timezone offset.

Note that when determining equality, these semantics imply that if either date/time has

unspecified components, the result of the comparison will be unknown. However, it is often the

case that comparisons should only be carried to a specific level of precision. To enable this, CQL

provides precision-based versions of the comparison operators:

Operator Precision-based Operator

= same as

< before

> after

<= same or before

>= same or after

TABLE 2-N

If no precision is specified, these operators are equivalent to the symbolic comparison operators,

implying comparison precision to the millisecond. However, each operator allows a precision

specifier to be used. For example:

DateTime(2014) same year as DateTime(2014, 7, 11)
DateTime(2014, 7) same month as DateTime(2014, 7, 11)
DateTime(2014, 7, 11) same day as DateTime(2014, 7, 11, 14, 0, 0)

Each of these expressions returns true because the date/time values are equal at the specified

level of precision and above. For example, same month as means the same year and the same

month.

Note: To compare a specific component of two dates, use the extraction operators covered in the

next section.

For relative comparisons involving equality, the same as operator is suffixed with before or

after:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 59
© 2014-2017 Health Level Seven International. All rights reserved

DateTime(2015) same year or after DateTime(2014, 7, 11)
DateTime(2014, 4) same month or before DateTime(2014, 7, 11)
DateTime(2014, 7, 15) same day or after DateTime(2014, 7, 11, 14, 0, 0)

Each of these expressions also returns true. And finally, for the relative inequalities (< and >):

DateTime(2015) after year of DateTime(2014, 7, 11)
DateTime(2014, 4) before month of DateTime(2014, 7, 11)
DateTime(2014, 7, 15) after day of DateTime(2014, 7, 11, 14, 0, 0)

Each of these expressions also returns true.

Note that these operators may still return null if the date/time values involved have unspecified

components at or above the specified comparison precision.

2.5.4.3 Extracting Date and Time Components

Given a date/time value, CQL supports extraction of any of the components. For example:

date from X
year from X
minute from X

These examples extract the date from X, the year from X, and the minute from X. The following

table lists the valid extraction components and their resulting types:

Component Description Result
Type

date from X Extracts the date of its argument (with no time components) DateTime

time from X Extracts the time of its argument Time

year from X Extracts the year component its argument Integer

month from X Extracts the month component of its argument Integer

day from X Extracts the day component of its argument Integer

hour from X Extracts the hour component of its argument Integer

minute from X Extracts the minute component of its argument Integer

second from X Extracts the second component of its argument Integer

millisecond from X Extracts the millisecond component of its argument Integer

timezone from X Extracts the timezone offset component of its argument Decimal

TABLE 2-O

Note that if X is null, the result is null. If a date/time value does not have a particular component

specified, extracting that component will result in null. Note also that if the timezone component

for a particular date/time value was not provided as part of the constructor, because the value is

defaulted to the timezone of the evaluation request, the result of extracting the timezone

component will be the default timezone, not null.

2.5.4.4 Date/Time Arithmetic

By using quantities of time durations, CQL supports the ability to perform calendar arithmetic

with the expected semantics for durations with variable numbers of days such as months and

years. The arithmetic addition and subtraction symbols (+ and -) are used for this purpose. For

example:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 60
© 2014-2017 Health Level Seven International. All rights reserved

Today() - 1 year

The above expression computes the date one year before today, taking into account variable

length years and months. Any valid time duration can be added to or subtracted from any

datetime value.

Note that as with the numeric arithmetic operators, if either or both arguments are null, the result

of the operation is null.

The operation is performed by converting the time-based quantity to the highest specified

granularity in the date/time value (truncating any resulting decimal portion) and then adding it to

the date/time value. For example, consider the following addition:

DateTime(2014) + 24 months

This example results in the value DateTime(2016) even though the date/time value is not specified

to the level of precision of the time-valued quantity.

Note also that this means that if decimals appear in the time-valued quantities, the fractional

component will be ignored. For example:

@2016-01-01 – 1.1 years

Will result in the value @2015-01-01, the decimal component is truncated. When this decimal

truncation occurs, run-time implementations should issue a warning. When it’s possible to

determine at compile-time that this truncation will occur, a warning will be issued by the

translator.

2.5.4.5 Computing Durations and Differences

In addition to constructing durations, CQL supports the ability to compute duration and

difference between two datetimes. For duration, the calculation is performed based on the

calendar duration for the precision. For difference, the calculation is performed by counting the

number of boundaries of the specific precision crossed between the two dates.

months between X and Y

This example calculates the number of months between its arguments. For variable length

precisions (months and years), the operation uses the calendar length of the precision to

determine the number of periods.

For example, the following expression returns 2:

months between @2014-01-01 and @2014-03-01

This is because there are two whole calendar months between the two dates. Fractional months

are not included in the result. This means that this expression also returns 2:

months between @2014-01-01 and @2014-03-15

For difference, the calculation is concerned with the number of boundaries crossed:

difference in months between X and Y

The above example calculates the number of month boundaries crossed between X and Y.

To illustrate the difference between the two calculations, consider the following examples:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 61
© 2014-2017 Health Level Seven International. All rights reserved

duration in months between @2014-01-31 and @2014-02-01
difference in months between @2014-01-31 and @2014-02-01

The first example returns 0 because there is less than one calendar month between the two dates.

The second example, however, returns 1, because a month boundary was crossed between the

two dates.

The following duration units are valid for the duration and difference operators:

years
months
weeks
days
hours
minutes
seconds
milliseconds

If the first argument is after the second, the result will be negative.

For calculations involving weeks, Sunday is considered the first day of the week.

In addition, if either date/time value involved is not specified to the level of precision for the

duration or difference being calculated, the result will be an uncertainty covering the range of

possible values for the duration. Subsequent comparisons using this uncertainty may result in

null rather than true or false. For a detailed discussion of the behavior of uncertainties, refer to

the Uncertainty section.

If either or both arguments are null, the result is null.

For a detailed set of examples of calculating time intervals, please refer to Appendix H - Time

Interval Calculation Examples.

2.5.5 Timing and Interval Operators

Clinical information often contains not only date/time information as timestamps (points in time),

but intervals of time, such as the effective time for an encounter or condition. Moreover, clinical

logic involving this information often requires the ability to relate this temporal information. For

example, a clinical quality measure might look for “patients with an inpatient encounter during

which a condition started”. CQL provides an exhaustive set of operators for describing these

types of temporal relationships between clinical information.

These interval operations can be broadly categorized as follows:

• General – Construction, extraction, and membership operators

• Comparison – Comparison of two intervals

• Timing – Describing the relationship between two intervals using boundaries

• Computation – Using existing intervals to compute new ones

2.5.5.1 Operating on Intervals

General interval operators in CQL provide basic operations for dealing with interval values,

including construction, extraction, and membership.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 62
© 2014-2017 Health Level Seven International. All rights reserved

Interval values can be constructed using the interval selector, as discussed in Interval Values

above.

Membership testing for intervals can be done using the in and contains operators. For example:

Interval[3, 5) contains 4
4 in Interval[3, 5)

These two expressions are equivalent (inverse of each other) and both return true.

The boundary point for an interval can be determined using the start of and end of operators:

start of Interval[3, 5)
end of Interval[3, 5)

The first expression above returns 3, while the second expression returns 4.

To extract a point from an interval, the point from operator is used:

point from Interval[3, 3]
point from Interval[3, 5)

Note that the point from operator may only be used on a unit interval, or an interval containing a

single point. Attempting to extract a point from an interval that is wider than one will result in a

run-time error.

The starting and ending point of an interval may be null, the meaning of which depends on

whether the interval is closed (inclusive) or open (exclusive). If a boundary point is null and the

boundary is exclusive, the boundary is considered unknown and operations involving that point

will return null. For example:

Interval[3, null) contains 5

This expression results in null. However, if the point is null and the interval boundary is

inclusive, the boundary is interpreted as the beginning or ending of the range of the point type.

For example:

Interval[3, null] contains 5

This expression returns true because the null ending boundary is inclusive and is therefore

interpreted as extending to the end of the range of possible values for the point type of the

interval.

For numeric intervals, CQL defines a width operator, which returns the ending boundary minus

the starting boundary, plus one:

width of Interval[3, 5)
width of Interval[3, 5]

The first expression returns 2 (ending boundary of 4, minus the starting boundary of 3, plus 1),

while the second expression returns 3 (ending boundary of 5, minus the starting boundary of 3,

plus 1). In other words, the width operator returns the number of points that are included in the

interval.

For date/time intervals, CQL defines a duration in operator as well as a difference in operator,

both of which are defined in the same way as the date/time duration and difference operators,

respectively. For example:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 63
© 2014-2017 Health Level Seven International. All rights reserved

duration in days of X

is equivalent to:

days between start of X and end of X

This returns the number of whole days between the starting and ending dates of the interval X.

2.5.5.2 Comparing Intervals

CQL supports comparison of two interval values using a complete set of operations. The

following table describes these operators with a diagram showing the relationship between two

intervals that is characterized by each operation:

TABLE 2-P

 Each of these operators returns true if the intervals X and Y are in the given relationship to each

other. If either or both arguments are null, the result is null. Otherwise, the result is false.

In addition, CQL allows meets and overlaps to be invoked without the before or after suffix,

indicating that either relationship should return true. In other words, X meets Y is equivalent to X

meets before Y or X meets after Y, and similarly for the overlaps operator.

Note that to use these operators, the intervals must be of the same point type. For example, it is

invalid to compare an interval of date/times with an interval of numbers.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 64
© 2014-2017 Health Level Seven International. All rights reserved

2.5.5.3 Timing Relationships

In addition to the interval comparison operators described above, CQL allows various timing

relationships to be expressed by directly accessing the start and end boundaries of the intervals

involved. For example:

X starts before start Y

This expression returns true if the start of X is before the start of Y.

In addition, timing phrases allow the use of time durations to offset the relationship. For example:

X starts 3 days before start Y

This returns true if the start of X is equal to three days before the start of Y. Timing phrases can

also include less than, more than, or less and or more to determine how the time duration is

interpreted. For example:

X starts 3 days or less before start Y
X starts less than 3 days before start Y
X starts 3 days or more before start Y
X starts more than 3 days before start Y

The first expression returns true if the start of X is within the interval beginning three days

before the start of Y and ending just before the start of Y. The second expression returns true if

the start of Y is within the interval beginning just after three days before the start of Y and ending

just before the start of Y. The third expression returns true if the start of X is three days or more

before the start of Y. And the fourth expression returns true if the start of X is more than three

days before the start of Y.

Timing phrases can also support inclusive comparisons using on or and or on syntax. For

example:

X starts 3 days or less before or on start Y
X starts less than 3 days on or after end Y

The first expression returns true if the start of X is within the interval beginning three days before

the start of Y and ending exactly on the start of Y. The second expression returns true if the start

of X is within the interval beginning exactly on the end of Y and ending less than 3 days after the

end of Y.

Note that on or and or on can be used with both before and after. This flexibility is to allow for

natural phrasing.

Timing phrases also allow the use of within to establish a range for comparison:

X starts within 3 days of start Y

This expression returns true if the start of X is in the interval beginning three days before the

start of Y and ending 3 days after the start of Y.

In addition, if either comparand is a date/time, rather than an interval, it can be used in any of the

timing phrases without the boundary access modifiers:

dateTimeX within 3 days of dateTimeY

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 65
© 2014-2017 Health Level Seven International. All rights reserved

In other words, the timing phrases in general compare two quantities, either of which may be an

date/time interval or date/time point value, and the boundary access modifiers can be added to a

given timing phrase to access the boundary of an interval.

The following table describes the operators that can be used to construct timing phrases:

O
p
e
r
a
t
o
r

Beginning
Boundary

(starts/ends)

Ending
Boundary
(start/end)

Duration
Offset

Or Less/
Or More

O
r
B
e
f
o
r
e
/
O
r
A
f
t
e
r

Less Than/
More Than

Or On/ On
Or

s
a
m
e
a
s

yes yes no no y
e
s

no no

b
e
f
o
r
e

yes yes yes yes n
o

yes yes

a
f
t
e
r

yes yes yes yes n
o

yes yes

w
i
t
h
i
n
.
.
.
o
f

yes yes required no n
o

no no

d
u
r
i
n
g

yes no no no n
o

no no

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 66
© 2014-2017 Health Level Seven International. All rights reserved

i
n
c
l
u
d
e
s

no yes no no n
o

no no

TABLE 2-Q

A yes in the Beginning Boundary column indicates that the operator can be preceded by starts or

ends if the left comparand is an interval.

A yes in the Ending Boundary column indicates that the timing phrase can be succeeded by a

start or end if the right comparand is an interval.

A yes in the duration offset column indicates that the timing phrase may include a duration offset.

A yes in the Or Less/OrMore column indicates that the timing phrase may include an or less/or

more modifier.

A yes in the Or Before/Or After column indicates that the timing phrase may include an or

before/or after modifier.

A yes in the Less Than/More Than column indicates that the timing phrase may include a less

than/more than modifier.

And finally, a yes in the Or On/On Or column indicates that the timing phrase may include a on

or/or on modifier.

In addition, to support more natural-language phrasing of timing operations, the keyword occurs

may appear anywhere that starts or ends can appear in the timing phrase. For example:

X occurs within 3 days of start Y

The occurs keyword is both optional and ignored by CQL. It is only provided to enable more

natural phrasing.

2.5.5.4 Computing Intervals

CQL provides several operators that can be used to combine existing intervals into new intervals.

For example:

Interval[1, 3] union Interval[3, 6]

This expression returns the interval [1, 6]. Note that interval union is only defined if the

arguments overlap or meet.

Interval intersect results in the overlapping portion of two intervals:

Interval[1, 4] intersect Interval[3, 6]

This expression results in the interval [3, 4].

Interval except computes the difference between two intervals. In other words, the result is points

in the left operand that are not in the right operand. For example:

Interval[1, 4] except Interval[3, 6]

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 67
© 2014-2017 Health Level Seven International. All rights reserved

This expression results in the interval [1, 2]. Note that except is only defined for cases that result

in a well-formed interval. For example, if either argument properly includes the other and does

not start or end it, the result of subtracting one interval from the other would be two intervals, and

the result is thus not defined and results in null.

The following diagrams depict the union, intersect, and except operators for intervals:

FIGURE 2-A

2.5.5.5 Date/Time Intervals

Because CQL supports date/time values with varying levels of precision, intervals of date/times

can potentially involve imprecise date/time values. To ensure well-defined intervals and

consistent semantics, date/time intervals are always considered to contain the full set of values

contained by the boundaries of the interval. For example, the following interval expression

contains all the instants of time, to the millisecond precision, beginning at midnight on January

1st, 2014, and ending at midnight on January 1st, 2015:

interval[DateTime(2014, 1, 1, 0, 0, 0, 0), DateTime(2015, 1, 1, 0, 0, 0, 0)]

However, if the boundaries of the interval are specified to a lower precision, the interval is

interpreted as beginning at some time within the most specified precision, and ending at some

time within the most specified precision. For example, the following interval expression contains

all the instants of time, to the millisecond precision, beginning sometime in the year 2014, and

ending sometime in the year 2015:

interval[DateTime(2014), DateTime(2015)]

When calculating the duration of the interval, this imprecision will in general result in an

uncertainty, just as it does when calculating the duration between two imprecise date/time values.

In addition, the boundaries may even be specified to different levels of precision. For example,

the following interval expression contains all the instants of time, to the millisecond precision,

beginning sometime in the year 2014, and ending sometime on January 1st, 2015:

interval[DateTime(2014), DateTime(2015, 1, 1)]

2.5.6 List Operators

Clinical information is almost always stored, collected, and presented in terms of lists of

information. As a result, the expression of clinical knowledge almost always involves dealing

with lists of information in some way. The query construct already discussed provides a powerful

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 68
© 2014-2017 Health Level Seven International. All rights reserved

mechanism for dealing with lists, but CQL also provides a comprehensive set of operations for

dealing with lists in other ways. These operations can be broadly categorized into three groups:

• General List Operations – Operations for dealing with lists in general, such as

constructing lists, accessing elements, and determining the number of elements

• Comparisons – Operations for comparing one list to another

• Computation – Operations for constructing new lists based on existing ones

2.5.6.1 Operating on Lists

Although the most common source of lists in CQL is the retrieve expression, lists can also be

constructed directly using the list selector discussed in List Values.

The elements of a list can be accessed using the indexer ([]) operator. For example:

X[0]

This expression accesses the first element of the list X.

If a list contains a single element, the singleton from operator can be used to extract it:

singleton from { 1 }
singleton from { 1, 2, 3 }

Using singleton from on a list with multiple elements will result in a run-time error.

The index of an element e in a list X can be obtained using the IndexOf operator. For example:

IndexOf({'a', 'b', 'c' }, 'b') // returns 1

If the element is not found in the list, IndexOf returns -1.

In addition, the number of elements in a list can be determined using the Count operator. For

example:

Count({ 1, 2, 3, 4, 5 })

This expression returns the value 5.

Membership in lists can be determined using the in operator and its inverse, contains:

{ 1, 2, 3, 4, 5 } contains 4
4 in { 1, 2, 3, 4, 5 }

The exists operator can be used to test whether a list contains any elements:

exists ({ 1, 2, 3, 4, 5 })
exists ({ })

The first expression returns true, while the second expression returns false. This is most often

used in queries to determine whether a query returns any results.

The First and Last operators can be used to retrieve the first and last elements of a list. For

example:

First({ 1, 2, 3, 4, 5 })
Last({ 1, 2, 3, 4, 5 })

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 69
© 2014-2017 Health Level Seven International. All rights reserved

First({})
Last({})

In the above examples, the first expression returns 1, and the second expression returns 5. The

last two expressions both return null since there is no first or last element of an empty list. Note

that the First and Last operators refer to the position of an element in the list, not the temporal

relationship between elements. In order to extract the earliest or latest elements of a list, the list

would first need to be sorted appropriately.

In addition, to provide consistent and intuitive semantics when dealing with lists, whenever an

operation needs to determine whether or not a given list contains an element (including list

operations discussed later such as intersect, except, and distinct), CQL uses the notion of

equivalent, rather than pure equality.

2.5.6.2 Comparing Lists

In addition to list equality, already discussed in Comparison Operators, lists can be compared

using the following operators:

Operator Description

X includes Y Returns true if every element in list Y is also in list X, using
equivalence semantics

X properly includes Y Returns true if every element in list Y is also in list X and list X
has more elements than list Y

X included in Y Returns true if every element in list X is also in list Y, using
equivalence semantics

X properly included in Y Returns true if every element in list X is also in list Y, and list Y
has more elements than list X

TABLE 2-R

{ 1, 2, 3, 4, 5 } includes { 5, 2, 3 }
{ 5, 2, 3 } included in { 1, 2, 3, 4, 5 }
{ 1, 2, 3, 4, 5 } includes { 4, 5, 6 }
{ 4, 5, 6 } included in { 1, 2, 3, 4, 5 }

In the above examples, the first two expressions are true, but the last two expressions are false.

The properly modifier ensures that the lists are not the same list. For example:

{ 1, 2, 3 } includes { 1, 2, 3 }
{ 1, 2, 3 } included in { 1, 2, 3 }
{ 1, 2, 3 } properly includes { 1, 2, 3 }
{ 1, 2, 3 } properly included in { 1, 2, 3 }
{ 1, 2, 3, 4, 5 } properly includes { 2, 3, 4 }
{ 2, 3, 4 } properly included in { 1, 2, 3, 4, 5 }

In the above examples, the first two expressions are true, but the next two expressions are false,

because although each element is in the other list, the properly requires that one list be strictly

larger than the other, as in the last two expressions.

Note that during is a synonym for included in and can be used anywhere included in is allowed.

The syntax allows for both keywords to enable more natural phrasing of time-based relationships

depending on context.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 70
© 2014-2017 Health Level Seven International. All rights reserved

2.5.6.3 Computing Lists

CQL provides several operators for computing new lists from existing ones.

To eliminate duplicates from a list, use the distinct operator:

distinct { 1, 1, 2, 2, 3, 4, 5 }

This example returns:

{ 1, 2, 3, 4, 5 }

Note that the distinct operator uses the notion of equivalence (~) to detect duplicates. Because

equivalence is defined for all types, this means that distinct can be used on lists with elements

of any type. In particular, duplicates can be eliminated from lists of tuples, and the operation will

use tuple equivalence (i.e. tuples are equal if they have the same type and the same values (or no

value) for each element of the same name).

To combine all the elements from multiple lists, use the union operator:

{ 1, 2, 3 } union { 3, 4, 5 }

This example returns:

{ 1, 2, 3, 4, 5 }

Note that duplicates are eliminated in the result of a union.

To compute only the common elements from multiple lists, use the intersect operator:

{ 1, 2, 3 } intersect { 3, 4, 5 }

This example returns:

{ 3 }

To remove the elements in one list from another list, use the except operator:

{ 1, 2, 3 } except { 3, 4, 5 }

This example returns:

{ 1, 2 }

The following diagrams depict the union, intersect, and except operators:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 71
© 2014-2017 Health Level Seven International. All rights reserved

FIGURE 2-B

As with the distinct operator, the intersect, and except operators use the equivalent operator to

determine when two elements are the same.

Because lists may contain lists, CQL provides a flatten operation that can flatten lists of lists:

flatten { { 1, 2, 3 }, { 3, 4, 5 } }

This example returns:

{ 1, 2, 3, 3, 4, 5 }

Note that unlike the union operator, duplicate elements are retained in the result.

Note also that flatten only flattens one level, it is not recursive.

Although the examples in this section primarily use lists of integers, these operators work on lists

with elements of any type.

2.5.6.4 Lists of Intervals

Most list operators in CQL operate on lists of any type, but for lists of intervals, CQL supports a

collapse operator that determines the list of unique intervals from a given list of intervals.

Consider the following intervals:

FIGURE 2-C

If we want to determine the total duration covered by these intervals, we cannot simply use the

distinct operator, because each of these intervals is different. Yet two of them overlap, so they

cover part of the same range. We also can’t simply perform an aggregate union of the intervals

because some of them don’t overlap, so there isn’t a single interval that covers the entire range.

The solution is the collapse operator which returns the set of intervals that completely cover the

ranges covered by the inputs:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 72
© 2014-2017 Health Level Seven International. All rights reserved

FIGURE 2-D

Now, when we take the Sum of the durations of the intervals, we are guaranteed not to overcount

any particular point in the ranges that may have been included in multiple intervals in the original

set.

2.5.7 Aggregate Operators

Summaries and statistical calculations are a critical aspect of being able to represent clinical

knowledge, especially in the quality measurement domain. Thus, CQL includes a comprehensive

set of aggregate operators.

Aggregate operators are defined to work on lists of values. For example, the Count operator

works on any list:

Count([Encounter])

This expression returns the number of Encounter events.

The Sum operator, however, works only on lists of numbers:

Sum({ 1, 2, 3, 4, 5 })

This example results in the sum 15. To sum the results of a list of Observation values, for

example, a query is used to extract the values to be summed:

Sum([Observation] R return R.result)

In general, nulls encountered during aggregation are ignored, and with the exception of Count,

AllTrue, and AnyTrue, the result of the invocation of an aggregate on an empty list is null. Count is

defined to return 0 for an empty list. AllTrue is defined to return true for an empty list, and

AnyTrue is defined to return false for an empty list.

The following table lists the aggregate operators available in CQL:

Operator Description

Count Returns the number of elements in its argument

Sum Returns the numeric sum of the elements in the list

Min Returns the minimum value of any element in the list

Max Returns the maximum value of any element in the list

Avg Returns the numeric average (mean) of all elements in the list

Median Returns the statistical median of all elements in the list

Mode Returns the most frequently occurring value in the list

StdDev Returns the sample standard deviation (square root of the sample
variance) of the elements in the list

PopStdDev Returns the population standard deviation (square root of the population
variance) of the elements in the list

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 73
© 2014-2017 Health Level Seven International. All rights reserved

Operator Description

Variance Returns the sample variance (average distance of the data elements from
the sample mean, corrected for bias by using N-1 as the denominator in
the mean calculation, rather than N) of the elements in the list

PopVariance Returns the population variance (average distance of the data elements
from the population mean) of the elements in the list

AllTrue Returns true if all the elements in the list are true, false otherwise

AnyTrue Returns true if any of the elements in the list are true, false otherwise

TABLE 2-S

2.5.8 Clinical Operators

CQL supports several operators for use with the various clinical types in the language.

2.5.8.1 Quantity Operators

All quantities in CQL have unit and value components, which can be accessed in the same way as

properties. For example:

define IsTall: height.units = 'm' and height.value > 2

However, because CQL supports operations on quantities directly, this expression could be

simplified to:

define IsTall: height > 2 'm'

This formulation also has the advantage of allowing for the case that the actual value of height is

expressed in inches.

CQL supports the standard comparison operators (= != < <= > >=) and the standard arithmetic

operators (+ - * /) for quantities. In addition, aggregate operators that utilize these basic

comparisons and computations are also supported, such as Min, Max, Sum, etc.

Note that complete support for unit conversion for all valid UCUM units would be ideal, but

practical CQL implementations will likely provide support for a subset of units for commonly

used clinical dimensions. At a minimum, however, a CQL implementation must respect units and

throw an error if it is not capable of normalizing the quantities involved in a given expression to a

common unit.

2.5.8.2 Terminology Operators

In addition to providing first-class valueset and codesystem constructs, CQL provides operators

for retrieving and testing membership in valuesets and codesystems:

valueset "Acute Pharyngitis": '2.16.840.1.113883.3.464.1003.102.12.1011'
define InPharyngitis: SomeCodeValue in "Acute Pharyngitis"

These statements define the InPharyngitis expression as true if the Code-valued expression

SomeCodeValue is in the "Acute Pharyngitis" valueset. Note that valueset membership is based

strictly on the definition of equivalence (i.e. two codes are the same if they have the same values

for the code, system, and version elements). CQL explicitly forbids the notion of terminological

equivalence among codes being used in this context.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 74
© 2014-2017 Health Level Seven International. All rights reserved

Note that this operator can be invoked with a code argument of type String, Code, and Concept.

When invoked with a Concept, the result is true if any Code in the Concept is a member of the

given valueset.

A common terminological operation involves determining whether a given concept is implied, or

subsumed by another. This operation is generally referred to as subsumption and although useful,

is deliberately omitted from this specification. The reason for this omission is that subsumption is

generally a very complex operation, with different terminology systems providing different

mechanisms for defining and interpreting such relationships. As a result, specifying how that

occurs is beyond the scope of CQL at this time. This is not to say that a specific library of

subsumption operators could not be provided and broadly adopted and used, only that the CQL

specification does not attempt to dictate the semantics of that operation.

2.5.8.3 Patient Operators

To support determination of patient age consistently throughout quality logic, CQL defines

several age-related operators:

Operator Description

AgeInYearsAt(X) Determines the age of the patient in years as of the date X

AgeInYears() Determines the age of the patient in years as of today.
Equivalent to AgeInYearsAt(Today())

AgeInMonthsAt(X) Determines the age of the patient in months as of the date X

AgeInMonths() Determines the age of the patient in months as of today.
Equivalent to AgeInMonthsAt(Today())

AgeInDaysAt(X) Determines the age of the patient in days as of the date X

AgeInDays() Determines the age of the patient in days as of today.
Equivalent to AgeInDaysAt(Today())

AgeInHoursAt(X) Determines the age of the patient in hours as of the date/time X

AgeInHours() Determines the age of the patient in hours as of now.
Equivalent to AgeInHoursAt(Now())

CalculateAgeInYearsAt(D, X) Determines the age of a person with birthdate D in years as of
the date X

CalculateAgeInYears(D) Determines the age of a person with birthdate D in years as of
today. Equivalent to CalculateAgeInYearsAt(D, Today())

CalculateAgeInMonthsAt(D, X) Determines the age of a person with birthdate D in months as
of the date X

CalculateAgeInMonths(D) Determines the age of a person with birthdate D in months as
of today. Equivalent to CalculateAgeInMonthsAt(D, Today())

CalculateAgeInDaysAt(D, X) Determines the age of a person with birthdate D in days as of
the date X

CalculateAgeInDays(D) Determines the age of a person with birthdate D in days as of
today. Equivalent to CalculateAgeInDaysAt(D, Today())

CalculateAgeInHoursAt(D, X) Determines the age of a person with birthdate D in hours as of
the datetime X

CalculateAgeInHours(D) Determines the age of a person with birthdate D in hours as of
now. Equivalent to CalculateAgeInHoursAt(D, Now())

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 75
© 2014-2017 Health Level Seven International. All rights reserved

TABLE 2-T

These operators calculate age using calendar duration.

Note that when Age operators are invoked in a Population context, the result is a list of patient

ages, not a single age for the current patient.

2.6 Authoring Artifact Logic

This section provides a walkthrough of the process of developing shareable artifact logic using

CQL. The walkthrough is based on the development of the logic for a simplified Chlamydia

Screening quality measure and its associated decision support rule.

Although the examples in this guide focus on populations of patients, CQL can also be used to

express non-patient-based artifacts such as episode-of-care measures, or organizational measures

such as number of staff in a facility. For examples of these types of measures, see the Examples

included with this specification.

2.6.1 Running Example

The running example for this walkthrough is a simplification of CMS153, version 2, Chlamydia

Screening for Women. The original QDM for this measure was simplified by including only

references to the following QDM data elements:

• Patient characteristics of Birthdate and Sex

• Diagnosis

• Laboratory Test, Order

• Laboratory Test, Result

This results in the following QDM:

• Initial Patient Population =
o AND: "Patient Characteristic Birthdate: birth date" >= 16 year(s) starts before start of

"Measurement Period"
o AND: "Patient Characteristic Birthdate: birth date" < 24 year(s) starts before start of

"Measurement Period"
o AND: "Patient Characteristic Sex: Female"
o AND:

▪ OR: "Diagnosis: Other Female Reproductive Conditions" overlaps with

"Measurement Period"

▪ OR: "Diagnosis: Genital Herpes" overlaps with "Measurement Period"

▪ OR: "Diagnosis: Gonococcal Infections and Venereal Diseases" overlaps with

"Measurement Period"

▪ OR: "Diagnosis: Inflammatory Diseases of Female Reproductive Organs" overlaps

with "Measurement Period"

▪ OR: " Diagnosis: Chlamydia" overlaps with "Measurement Period"

▪ OR: "Diagnosis: HIV" overlaps with "Measurement Period"

▪ OR: "Diagnosis: Syphilis" overlaps with "Measurement Period"

▪ OR: "Diagnosis: Complications of Pregnancy, Childbirth and the Puerperium"

overlaps with "Measurement Period"

▪ OR:

▪ OR: "Laboratory Test, Order: Pregnancy Test"

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 76
© 2014-2017 Health Level Seven International. All rights reserved

▪ OR: "Laboratory Test, Order: Pap Test"

▪ OR: "Laboratory Test, Order: Lab Tests During Pregnancy"

▪ OR: "Laboratory Test, Order: Lab Tests for Sexually Transmitted

Infections"

▪ during "Measurement Period"

• Denominator =
o AND: "Initial Patient Population"

• Denominator Exclusions =

o None

• Numerator =

o AND: "Laboratory Test, Result: Chlamydia Screening (result)" during "Measurement Period"

• Denominator Exceptions =
o None

Note that these simplifications result in a measure that is not clinically relevant, and the result of

this walkthrough is in no way intended to be used in a production scenario. The walkthrough is

intended only to demonstrate how CQL can be used to construct shareable clinical logic.

As an aside, one of the simplifications made to the QDM presented above is the removal of the

notion of occurrencing. Readers familiar with that concept as defined in QDM should be aware

that CQL by design does not include this notion. CQL queries are expressive enough that the

correlation accomplished by occurrencing in QDM is not required in CQL.

The following table lists the QDM data elements involved and their mappings to the QUICK data

structures:

QDM Data Element QUICK Equivalent

Patient Characteristic Birthdate Patient.birthDate

Patient Characteristic Sex Patient.gender

Diagnosis Condition

Laboratory Test, Order DiagnosticOrder

Laboratory Test, Result DiagnosticReport

TABLE 2-U

Note that the specific mapping to the QUICK data structures is beyond the scope of this

walkthrough; it is only provided here to demonstrate the link back to the original QDM.

Note also that the use of the QDM as a starting point was deliberately chosen to provide

familiarity and is not a general requirement for building CQL. Artifact development could also

begin directly from clinical guidelines expressed in other formats or directly from relevant

clinical domain expertise. Using the QDM provides a familiar way to establish the starting

requirements.

2.6.2 Clinical Quality Measure Logic

For clinical quality measures, the CQL library simply provides a repository for definitions of the

populations involved. CQL is intended to support both CQM and CDS applications, so it does not

contain quality measure specific constructs. Rather, the containing artifact definition, such as an

HQMF document, would reference the appropriate criteria expression by name within the CQL

document.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 77
© 2014-2017 Health Level Seven International. All rights reserved

With that in mind, a CQL library intended to represent the logic for a CQM must expose at least

the population definitions needed for the measure. In this case, we have criteria definitions for:

• Initial Patient Population

• Denominator

• Numerator

Looking at the Initial Patient Population, we have the demographic criteria:

• Patient is at least 16 years old and less than 24 years old at the start of the measurement

period.

• Patient is female.

For the age criteria, CQL defines an AgeInYearsAt operator that returns the age of the patient as of

a given date/time. Using this operator, and assuming a measurement period of the year 2013, we

can express the patient age criteria as:

AgeInYearsAt(@2013-01-01) >= 16 and AgeInYearsAt(@2013-01-01) < 24

In order to use the AgeInYearsAt operator, we must be in the Patient context:

context Patient

In addition, to allow this criteria to be referenced both within the CQL library by other

expressions, as well as potentially externally, we need to assign an identifier:

define InInitialPopulation:
 AgeInYearsAt(@2013-01-01) >= 16 and AgeInYearsAt(@2013-01-01) < 24

Because the quality measure is defined over a measurement period, and many, if not all, of the

criteria we build will have some relationship to this measurement period, it is useful to define the

measurement period directly:

define MeasurementPeriod: Interval[
 @2013-01-01T00:00:00.0,
 @2014-01-01T00:00:00.0
)

This establishes MeasurementPeriod as the interval beginning precisely at midnight on January 1st,

2013, and ending immediately before midnight on January 1st, 2014. We can now use this in the

age criteria:

define InInitialPopulation:
 AgeInYearsAt(start of MeasurementPeriod) >= 16
 and AgeInYearsAt(start of MeasurementPeriod) < 24

Even more useful would be to define MeasurementPeriod as a parameter that can be provided

when the quality measure is evaluated. This allows us to use the same logic to evaluate the

quality measure for different years. So instead of using a define statement, we have:

parameter MeasurementPeriod default Interval[
 @2013-01-01T00:00:00.0,
 @2014-01-01T00:00:00.0
)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 78
© 2014-2017 Health Level Seven International. All rights reserved

The InInitialPopulation expression remains the same, but it now accesses the value of the

parameter instead of the define statement.

Since we are in the Patient context and have access to the attributes of the Patient (as defined by

the data model in use), the gender criteria can be expressed as follows:

Patient.gender in "Female Administrative Sex"

This criteria requires that the gender attribute of a Patient be a code that is in the valueset

identified by "Female Administrative Sex". Of course, this requires the valueset definition:

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2'

Putting it all together, we now have:

library CMS153_CQM version '2'

using QUICK

parameter MeasurementPeriod default Interval[
 @2013-01-01T00:00:00.0,
 @2014-01-01T00:00:00.0
)

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2'

context Patient

define InInitialPopulation:
 AgeInYearsAt(start of MeasurementPeriod) >= 16
 and AgeInYearsAt(start of MeasurementPeriod) < 24
 and Patient.gender in "Female Administrative Sex"

The next step is to capture the rest of the initial population criteria, beginning with this QDM

statement:

"Diagnosis: Other Female Reproductive Conditions" overlaps with "Measurement Period"

This criteria has three main components:

• The type of clinical statement involved

• The valueset involved

• The relationship to the measurement period

Using the mapping to QUICK, the equivalent retrieve in CQL is:

[Condition: "Other Female Reproductive Conditions"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod

This query retrieves all Condition events for the patient with a code in the "Other Female

Reproductive Conditions" valueset that overlap the measurement period. Note that in order to use

the overlaps operator, we had to construct an interval from the onsetDateTime and abatementDate

elements. If the model had an interval-valued “effective time” element, we could have used that

directly, rather than having to construct an interval.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 79
© 2014-2017 Health Level Seven International. All rights reserved

The result of the query is a list of conditions. However, this isn’t quite what the QDM statement

is actually saying. In QDM, the statement can be read loosely as “include patients in the initial

patient population that have at least one active diagnosis from the Other Female Reproductive

Conditions valueset.” To express this in CQL, what we really need to ask is whether the

equivalent retrieve above returns any results, which is accomplished with the exists operator:

exists ([Condition: "Other Female Reproductive Conditions"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)

Incorporating the next QDM statement:

OR: "Diagnosis: Genital Herpes" overlaps with "Measurement Period"

We have:

exists ([Condition: "Other Female Reproductive Conditions"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
or exists ([Condition: "Genital Herpes"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)

Which we can repeat for each Diagnosis, Active statement. Note here that even though we are

using the same alias, C, for each query, they do not clash because they are only declared within

their respective queries (or scopes).

Next, we get to the Laboratory Test statements:

• OR: "Laboratory Test, Order: Pregnancy Test"

• OR: "Laboratory Test, Order: Pap Test"

• OR: "Laboratory Test, Order: Lab Tests During Pregnancy"

• OR: "Laboratory Test, Order: Lab Tests for Sexually Transmitted Infections"

• during "Measurement Period"

We use the same approach. The equivalent retrieve for the first criteria is:

exists ([DiagnosticOrder: "Pregnancy Test"] O
 where Last(O.event E where E.status = 'completed' sort by E.date).date
 during MeasurementPeriod)

This query is retrieving pregnancy tests that were completed within the measurement period.

Because diagnostic orders do not have a top-level completion date, the date must be retrieved

with a nested query on the events associated with the diagnostic orders. The nested query returns

the set of completed events ordered by their completion date, the Last invocation returns the most

recent of those events, and the .date accessor retrieves the value of the date element of that

event.

And finally, translating the rest of the statements allows us to express the entire initial population

as:

define InInitialPopulation:
 AgeInYearsAt(start of MeasurementPeriod) >= 16
 and AgeInYearsAt(start of MeasurementPeriod) < 24
 and Patient.gender in "Female Administrative Sex"
 and
 (
 exists ([Condition: "Other Female Reproductive Conditions"] C

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 80
© 2014-2017 Health Level Seven International. All rights reserved

 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
 or exists ([Condition: "Genital Herpes"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
 or exists ([Condition: "Genococcal Infections and Venereal Diseases"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
 ...
 or exists ([DiagnosticOrder: "Pregnancy Test"] O
 where Last(O.event E where E.status = 'completed' sort by E.date).date
 during MeasurementPeriod)
 ...

)

2.6.3 Using Define Statements

Because CQL allows any number of define statements with any identifiers, we can structure the

logic of the measure to communicate more meaning to readers of the logic. For example, if we

look at the description of the quality measure:

Percentage of women 16-24 years of age who were identified as sexually active and who

had at least one test for chlamydia during the measurement period.

it becomes clear that the intent of the Diagnosis, Active and Laboratory Test, Order QDM criteria

is to attempt to determine whether or not the patient is sexually active. Of course, we’re dealing

with a simplified measure and so much of the nuance of the original measure is lost; the intent

here is not to determine whether this is in fact a good way in practice to determine whether or not

a patient is sexually active, but rather to show how CQL can be used to help communicate

aspects of the meaning of quality logic that would otherwise be lost or obscured.

With this in mind, rather than expressing the entire initial patient population as a single define,

we can break it up into several more understandable and more meaningful expressions:

define InDemographic:
 AgeInYearsAt(start of MeasurementPeriod) >= 16
 and AgeInYearsAt(start of MeasurementPeriod) < 24
 and Patient.gender in "Female Administrative Sex"

define SexuallyActive:
 exists ([Condition: "Other Female Reproductive Conditions"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
 or exists ([Condition: "Genital Herpes"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
 or exists ([Condition: "Genococcal Infections and Venereal Diseases"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
 ...
 or exists ([DiagnosticOrder: "Pregnancy Test"] O
 where Last(O.event E where E.status = 'completed' sort by E.date).date
 during MeasurementPeriod)
 ...

define InInitialPopulation:
 InDemographic and SexuallyActive

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 81
© 2014-2017 Health Level Seven International. All rights reserved

Restructuring the logic in this way not only simplifies the expressions involved and makes them

more understandable, but it clearly communicates the intent of each group of criteria.

Note that the InInitialPopulation expression is returning a boolean value indicating whether or

not the patient should be included in the initial population.

The next population to define is the denominator, which in our simplified expression of the

measure is the same as the initial population. Because the intent of the CQL library for a quality

measure is only to define the logic involved in defining the populations, it is assumed that the

larger context (such as an HQMF artifact definition) is providing the overall structure, including

the meaning of the various populations involved. As such, each population definition with the

CQL library should include only those aspects that are unique to that population.

For example, the actual criteria for the denominator is that the patient is in the initial patient

population. But because that notion is already implied by the definition of a population measure

(that the denominator is a subset of the initial population), the CQL for the denominator should

simply be:

define InDenominator: true

This approach to defining the criteria is more flexible from the perspective of actually evaluating

a quality measure, but it may be somewhat confusing when looking at the CQL in isolation.

Note that the approach to defining population criteria will actually be established by the CQF-

Based HQMF Implementation Guide. We follow this approach here just for simplicity.

Following this approach then, we express the numerator as:

define InNumerator:
 exists ([DiagnosticReport: "Chlamydia Screening"] R
 where R.issued during MeasurementPeriod and R.result is not null)

Note that the R.result is not null condition is required because the original QDM statement

involves a test for the presence of an attribute:

"Laboratory Test, Result: Chlamydia Screening (result)" during "Measurement Period"

The (result) syntax indicates that the item should only be included if there is some value present

for the result attribute. The equivalent expression in CQL is the null test.

Finally, putting it all together, we have a complete, albeit simplified, definition of the logic

involved in defining the population criteria for a measure:

library CMS153_CQM version '2'

using QUICK

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2'
...
parameter MeasurementPeriod default Interval[
 @2013-01-01T00:00:00.0,
 @2014-01-01T00:00:00.0
)

context Patient

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 82
© 2014-2017 Health Level Seven International. All rights reserved

define InDemographic:
 AgeInYearsAt(start of MeasurementPeriod) >= 16
 and AgeInYearsAt(start of MeasurementPeriod) < 24
 and Patient.gender in "Female Administrative Sex"

define SexuallyActive:
 exists ([Condition: "Other Female Reproductive Conditions"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
 or exists ([Condition: "Genital Herpes"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
 or exists ([Condition: "Genococcal Infections and Venereal Diseases"] C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
 ...
 or exists ([DiagnosticOrder: "Pregnancy Test"] O
 where Last(O.event E where E.status = 'completed').date
 during MeasurementPeriod)
 ...

define InInitialPopulation:
 InDemographic and SexuallyActive

define InDenominator: true

define InNumerator:
 exists ([DiagnosticReport: "Chlamydia Screening"] R
 where R.issued during MeasurementPeriod and R.result is not null)

2.6.4 Clinical Decision Support Logic

Using the same simplified measure expression as a basis, we will now build a complementary

clinical decision support rule that can provide guidance at the point-of-care. In general, when

choosing what decision support artifacts will be most complementary to a given quality measure,

several factors must be considered including EHR and practitioner workflows, data availability,

the potential impacts of the guidance, and many others.

Though these are all important considerations and should not be ignored, they are beyond the

scope of this document, and for the purposes of this walkthrough, we will assume that a point-of-

care decision support intervention has been selected as the most appropriate artifact.

When building a point-of-care intervention based on a quality measure, several specific factors

must be considered.

First, quality measures typically contain logic designed to identify a specific setting in which a

particular aspect of health quality is to be measured. This usually involves identifying various

types of encounters. By contrast, a point-of-care decision support artifact is typically written to

be evaluated in a specific context, so the criteria around establishing the setting can typically be

ignored. For the simplified measure we are dealing with, the encounter setting criteria were

removed as part of the simplification.

Second, quality measures are designed to measure quality within a specific timeframe, whereas

point-of-care measures don’t necessarily have those same restrictions. For example, the

diagnoses in the current example are restricted to the measurement period. There may be some

clinically relevant limit on the amount of time that should be used to search for diagnoses, but it

does not necessarily align with the measurement period. For the purposes of this walkthrough, we

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 83
© 2014-2017 Health Level Seven International. All rights reserved

will make the simplifying assumption that any past history of the relevant diagnoses is a potential

indicator of sexual activity.

Third, quality measures are written retrospectively, that is, they are always dealing with events

that occurred in the past. By contrast, decision support artifacts usually involve prospective, as

well as retrospective data. As such, different types of clinical events may be involved, such as

planned or proposed events.

Fourth, quality measures, especially proportion measures, typically express the numerator criteria

as a positive result, whereas the complementary logic for a decision support rule would be

looking for the absence of the criteria. For example, the criteria for membership in the numerator

of the measure we are using is that the patient has had a Chlamydia screening within the

measurement period. For the point-of-care intervention, that logic becomes a test for patients that

have not had a Chlamydia screening.

And finally, although present in some quality measures, many do not include criteria to determine

whether or not there is some practitioner- or patient-provided reason for not taking some course

of action. This is often due to the lack of a standardized mechanism for describing this criteria

and is usually handled on a measure-by-measure basis as part of actually evaluating measures.

Regardless of the reason, because a point-of-care intervention has the potential to interrupt a

practitioner workflow, the ability to determine whether or not a course of action being proposed

has already been considered and rejected is critical.

With these factors in mind, and using the CQL for the measure we have already built, deriving a

point-of-care intervention is fairly straightforward.

To begin with, we are using the same data model, QUICK, the same valueset declarations, and

the same context:

library CMS153_CDS version '2'

using QUICK

codesystem "SNOMED": 'http://snomed.info/sct'

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2'
...

context Patient

Note that we are not using the MeasurementPeriod parameter. There are other potential uses for

parameters within the point-of-care intervention (for example, to specify a threshold for how far

back to look for a Chlamydia screening), but we are ignoring those aspects for the purposes of

this walkthrough.

For the InDemographic criteria, we are then simply concerned with female patients between the

ages of 16 and 24, so we change the criteria to use the AgeInYears, rather than the AgeInYearsAt

operator, to determine the patient’s age as of today:

define InDemographic:
 AgeInYears() >= 16 and AgeInYears() < 24
 and Patient.gender in "Female Administrative Sex"

Similarly for the SexuallyActive criteria, we remove the relationship to the measurement period:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 84
© 2014-2017 Health Level Seven International. All rights reserved

define SexuallyActive:
 exists ([Condition: "Other Female Reproductive Conditions"])
 or exists ([Condition: "Genital Herpes"])
 or exists ([Condition: "Genococcal Infections and Venereal Diseases"])
 ...
 or exists ([DiagnosticOrder: "Pregnancy Test"])
 ...

For the numerator, we need to invert the logic, so that we are looking for patients that have not

had a Chlamydia screening, and rather than the measurement period, we are looking for the test

within the last year:

not exists ([DiagnosticReport: "Chlamydia Screening"] R
 where R.issued during Interval[Today() - 1 years, Today()]
 and R.result is not null)

In addition, we need a test to ensure that the patient does not have a planned Chlamydia

screening:

not exists ([ProcedureRequest: "Chlamydia Screening"] R
 where R.orderedOn same day or after Today())

And to ensure that there is not a reason for not performing a Chlamydia screening:

not exists ([Observation: "Reason for not performing Chlamydia Screening"])

We combine those into a NoScreening criteria:

define NoScreening:
 not exists ([DiagnosticReport: "Chlamydia Screening"] R
 where R.issued during Interval[Today() - 1 years, Today()]
 and R.result is not null)
 and not exists ([ProcedureRequest: "Chlamydia Screening"] R
 where R.orderedOn same day or after Today())
 and
 not exists ([Observation: "Reason for not performing Chlamydia Screening"])

And finally, we provide an overall condition that indicates whether or not this intervention should

be triggered:

define NeedScreening: InDemographic and SexuallyActive and NoScreening

Now, this library can be referenced by a CDS knowledge artifact, and the condition can reference

the NeedScreening expression, which loosely reads: the patient needs screening if they are in the

appropriate demographic, have indicators of sexual activity, and do not have screening.

In addition, this library should include the proposal aspect of the intervention. In general, the

overall artifact definition (such as a CDS KAS artifact) would define what actions should be

performed when the condition is satisfied. Portions of that action definition may reference other

expressions within a CQL library, just as the HQMF for a quality measure may reference multiple

expressions within CQL to identify the various populations in the measure. In this case, the

intervention may construct a proposal for a Chlamydia Screening:

define ChlamydiaScreeningRequest: ProcedureRequest {
 type: Code '442487003' from "SNOMED-CT"
 display ' Screening for Chlamydia trachomatis (procedure)',
 status: 'proposed'

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 85
© 2014-2017 Health Level Seven International. All rights reserved

 // values for other elements of the request...
}

The containing artifact would then use this expression as the target of an action, evaluating the

expression if the condition of the decision support rule is met, and returning the result as the

proposal to the calling environment.

2.6.5 Using Libraries to Share Logic

The previous examples of building a quality measure and a decision support artifact have so far

demonstrated the ability to describe the logic involved using the same underlying data model, as

well as the same expression language. Now we can take that one step further and look at the use

of CQL libraries to actually express the artifacts using the same logic, rather than just the same

data model and language.

We start by identifying the aspects that are identical between the two:

1. SexuallyActive criteria, without the timing relationship

2. ChlamydiaScreening test, without the timing relationship

With these in mind, we can create a new library, CMS153_Common, that will contain the common

elements:

library CMS153_Common version '2'

using QUICK

valueset "Female Administrative Sex": '2.16.840.1.113883.3.560.100.2'
...

context Patient

define ConditionsIndicatingSexualActivity:
 [Condition: "Other Female Reproductive Conditions"]
 union [Condition: "Genital Herpes"]
 union ...

define LaboratoryTestsIndicatingSexualActivity:
 [DiagnosticOrder: "Pregnancy Test"]
 union [DiagnosticOrder: "Pap"]
 union ...

define ResultsPresentForChlamydiaScreening:
 [DiagnosticReport: "Chlamydia Screening"] R where R.result is not null

Using this library, we can then rewrite the CQM to reference the common elements from the

library:

library CMS153_CQM version '2'

using QUICK

include CMS153_Common version '2' called Common

parameter MeasurementPeriod default Interval[

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 86
© 2014-2017 Health Level Seven International. All rights reserved

 @2013-01-01T00:00:00.0,
 @2014-01-01T00:00:00.0
)

context Patient

define InDemographic:
 AgeInYearsAt(start of MeasurementPeriod) >= 16
 and AgeInYearsAt(start of MeasurementPeriod) < 24
 and Patient.gender in Common."Female Administrative Sex"

define SexuallyActive:
 exists (Common.ConditionsIndicatingSexualActivity C
 where Interval[C.onsetDateTime, C.abatementDate] overlaps MeasurementPeriod)
 or exists (Common.LaboratoryTestsIndicatingSexualActivity R
 where R.issued during MeasurementPeriod)

define InInitialPopulation:
 InDemographic and SexuallyActive

define InDenominator:
 true

define InNumerator:
 exists (Common.ResultsPresentForChlamydiaScreening S
 where S.issued during MeasurementPeriod)

And similarly for the CDS artifact:

library CMS153_CDS version '2'

using QUICK

include CMS153_Common version '2' called Common

valueset "Reason for not performing Chlamydia Screening": 'TBD'

context Patient

define InDemographic:
 AgeInYears() >= 16 and AgeInYears() < 24
 and Patient.gender in Common."Female Administrative Sex"

define SexuallyActive:
 exists (Common.ConditionsIndicatingSexualActivity)
 or exists (Common.LaboratoryTestsIndicatingSexualActivity)

define NoScreening:
 not exists (Common.ResultsPresentForChlamydiaScreening S
 where S.issued during Interval[Today() - 1 years, Today()])
 and not exists ([ProcedureRequest: Common."Chlamydia Screening"] R
 where R.orderedOn same day or after Today()

define NeedScreening: InDemographic and SexuallyActive and NoScreening

In addition to sharing between quality measures and clinical decision support artifacts, the use of

common libraries will allow the same logic to be shared by multiple quality measures or decision

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 87
© 2014-2017 Health Level Seven International. All rights reserved

support artifacts. For example, a set of artifacts for measurement and improvement of the

treatment of diabetes could all use a common library that provides base definitions for

determining when a patient is part of the population of interest.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 88
© 2014-2017 Health Level Seven International. All rights reserved

3 DEVELOPER’S GUIDE

This chapter complements the Author’s Guide by providing more in-depth discussion of language

elements, semantics, more complex query scenarios, and more advanced topics such as typing

and function definition. Readers are expected to be familiar with the content of the Author’s

Guide in the discussions that follow.

3.1 Lexical Elements

CQL is intended to be an authoring language. As such, the syntax is designed to be intuitive and

clear, both when writing and reading the language. Care has been taken to ensure that the

language contains a simple and clear core set of language elements, and that they all interact in a

consistent and predictable manner.

As with any traditional computer language, CQL uses typical lexical elements such as

whitespace, keywords, symbols, comments, and so on.

CQL defines the following basic lexical elements:

Element Description

Whitespace Whitespace defines the separation between all tokens in the language

Comment Comments are ignored by the language, allowing for descriptive text

Literal Literals allow basic values to be represented within the language

Symbol Symbols such as +, -, *, and /

Keyword Grammar-recognized keywords such as define and where

Identifier User-defined identifiers

TABLE 3-A

Every valid CQL document can be broken down into a set of tokens, each of which is one of

these basic lexical elements. The following sections describe each of these elements in more

detail.

3.1.1 Whitespace

CQL defines tab, space, and return as whitespace, meaning they are only used to separate other

tokens within the language. Any number of whitespace characters can appear, and the language

does not use whitespace for anything other than delimiting tokens.

3.1.2 Comments

CQL defines two styles of comments, single-line, and multi-line. A single-line comment consists

of two forward slashes, followed by any text up to the end of the line:

define Foo: 1 + 1 // This is a single-line comment

To begin a multi-line comment, the typical forward slash-asterisk token is used. The comment is

closed with an asterisk-forward slash, and everything enclosed is ignored:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 89
© 2014-2017 Health Level Seven International. All rights reserved

/*
This is a multi-line comment
Any text enclosed within is ignored
*/

Note that nested multi-line comments are not supported.

3.1.3 Literals

Literals provide for the representation of basic values within CQL. The following types of literals

are supported:

Literal Description

Null The null literal (null)

Boolean The boolean literals (true and false)

Integer Sequences of digits in the range 0..2^32-1

Decimal Sequences of digits with a decimal point, in the range 0.0.. 10^28 –10^-8

String Strings of any character enclosed within single-ticks (')

DateTime The at-symbol (@) followed by an ISO-8601 compliant representation of a date/time

Time The at-symbol (@) followed by an ISO-8601 compliant representation of a time

Quantity An integer or decimal literal followed by a datetime precision specifier, or a UCUM unit
specifier

TABLE 3-B

CQL uses standard escape sequences for string literals:

Escape Character
\' Single-quote
\" Double-quote
\r Carriage Return
\n Line Feed
\t Tab
\f Form Feed
\\ Backslash
\uXXXX Unicode character, where XXXX is the

hexadecimal representation of the character

3.1.4 Symbols

Symbols provide structure to the grammar and allow symbolic invocation of common operators

such as addition. CQL defines the following symbols:

Symbol Description

: Definition operator, typically read as “defined as”

() Parentheses for delimiting groups, as well as specifying and passing function parameters

[] Brackets for indexing into lists and strings, as well as delimiting the retrieve expression

{} Braces for delimiting lists, tuples, and function bodies

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 90
© 2014-2017 Health Level Seven International. All rights reserved

<> Angle-brackets for delimiting generic types within type specifiers

. Period for qualifiers and accessors

, Comma for delimiting items in a syntactic list

= != <= <
> >=

Comparison operators for comparing values

+ - * / ^ Arithmetic operators for performing calculations

TABLE 3-C

3.1.5 Keywords

Keywords are words that are recognized by the parser and used to build the various language

constructs. CQL defines the following keywords:

after
all
and
as
asc
ascending
before
between
by
called
case
cast
Code
codesystem
codesystems
collapse
Concept
contains
context
convert
date
day
days
default
define
desc
descending
difference

display
distinct
div
duration
during
else
end
ends
except
exists
false
flatten
from
function
hour
hours
if
implies
in
include
includes
included in
intersect
Interval
Is
let
library
List

maximum
meets
millisecond
milliseconds
minimum
minute
minutes
mod
month
months
not
null
occurs
of
or
or after
or before
or less
or more
overlaps
parameter
predecessor
private
properly
public
return
same
singleton

second
seconds
start
starts
sort
successor
such that
then
time
timezone
to
true
Tuple
union
using
valueset
version
week
weeks
where
when
width
with
within
without
xor
year
years

In general, keywords within CQL are also considered reserved words, meaning that it is illegal to

use them as identifiers. If necessary, identifiers that clash with a reserved word can be double-

quoted.

3.1.6 Identifiers

Identifiers are used to name various elements within the language. There are two types of

identifiers in CQL, simple, and quoted.

A simple identifier is any alphabetical character or an underscore, followed by any number of

alpha-numeric characters or underscores. For example, the following are all valid simple

identifiers:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 91
© 2014-2017 Health Level Seven International. All rights reserved

Foo
Foo1
_Foo
foo
FOO

Note also that these are all unique identifiers. By convention, simple identifiers in CQL should

not begin with underscores, and should be Pascal-cased (meaning the first letter of every word

within the identifier is capitalized), rather than using underscores.

In particular, the use of identifiers that differ only in case should be avoided.

A quoted identifier is any sequence of characters enclosed in double-quotes ("):

"Encounter, Performed"
"Diagnosis, Active"

The use of double-quotes allows identifiers to contain spaces, commas, and other characters that

would not be allowed within simple identifiers. This allows identifiers within CQL to be much

more descriptive and readable.

To specify a quoted-identifier that includes a double-quote ("), use a backslash to escape the

double-quote (\"):

"Encounter \"Inpatient\""

Note that double-quoted identifiers are still case-sensitive, and as with simple identifiers, the use

of double-quoted identifiers that differ only in case should be avoided. The enclosing quotation

marks are not included in the defined identifier.

CQL escape sequences for strings also work for identifiers:

Escape Character
\' Single-quote
\" Double-quote
\r Carriage Return
\n Line Feed
\t Tab
\f Form Feed
\\ Backslash
\uXXXX Unicode character, where XXXX is the

hexadecimal representation of the character

3.1.7 Operator Precedence

CQL uses standard in-fix operator notation for expressing computational logic. As a result, CQL

also adopts the expected operator precedence to ensure consistent and predictable behavior of

expressions written using CQL. The following table lists the order of operator precendence in

CQL from highest to lowest:

Category Operators

Primary . [] ()

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 92
© 2014-2017 Health Level Seven International. All rights reserved

Conversion Phrase convert..to

Unary Arithmetic unary +/-

Extractor start/end/duration/width/successor/predecessor of
component/singleton from

Exponentiation ^

Multiplicative * / div mod

Additive + -

Conditional if..then..else
case..else..end

Unary List distinct collapse flatten

Unary Test is null/true/false

Type Operators is as cast..as

Unary Logical not exists

Between between

precision between
difference in precision between

Comparison <= < > >=

Timing Phrase same as
includes
during
before/after
within

Interval Operators meets overlaps starts ends

Equality = != ~ !~

Membership in contains

Conjunction and

Disjunction or xor

Binary List union intersect except

TABLE 3-D

As with any typical computer language, parentheses can always be used to force order-of-

operations if the defined operator precedence results in the incorrect evaluation of a given

expression.

When multiple operators appear in a single category, precedence is determined by the order of

appearance in the expression, left to right.

3.1.8 Case-Sensitivity

To encourage consistency and reduce potential confusion, CQL is a case-sensitive language. This

means that case is considered when matching keywords and identifiers in the language. For

example, the following CQL is invalid:

Define Foo: 1 + 1

The declaration is illegal because the parser will not recognize Define as a keyword.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 93
© 2014-2017 Health Level Seven International. All rights reserved

3.2 Libraries

Libraries provide the basic unit of code organization for CQL. Each CQL file contains a single

library, and may include any number of libraries by reference, subject to the following

constraints:

• The local identifier for a library must be unique within the artifact.

• Circular library references are not allowed.

• Library references are not transitive.

Because the identifier for a library is just an identifier, it may be either a simple identifier, or a

quoted-identifier, which may actually be a uniform resource identifier (URI), an object identifier

(OID), or any other identifier system. It is up to the implementation and environment what

interpretation, if any, is given to the identifier of a library.

Libraries may also be declared with a specific version. When referencing a library, the reference

may include a version specifier. If the reference includes a version specifier, the library with that

version specifier must be used. If the reference does not include a version specifier, it is up to the

implementation environment to provide the most appropriate version of the referenced library.

It is an error to reference a specific version of a library if the library does not have a version

specifier, or if there is no library with the referenced version.

Note that the library declaration is optional in a CQL document, but if it is omitted, it is not

possible to reference the library from any other CQL library.

Libraries may reference other libraries to any degree of nesting, so long as no circular library

references are introduced, but library references are not transitive. This means that in order to

reference the components declared within a particular library, the library must be explicitly

included. In other words, referencing a library does not automatically include libraries referenced

by that library.

3.2.1 Access Modifiers

Each component of a library may have an access modifier applied, either public or private. If no

access modifier is applied, the component is considered public. Only public components of a

library may be accessed by referencing libraries. Private components can only be accessed within

the library itself.

3.2.2 Identifier Resolution

For identifiers, if a library name is not provided, the identifier must refer to a locally or system

defined component. If a library name is provided, it must be the local identifier for the library,

and that library must contain the identifier being referenced.

For named expressions, CQL supports forward declarations, so long as the resolution does not

result in a circular definition.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 94
© 2014-2017 Health Level Seven International. All rights reserved

3.2.3 Function Resolution

For functions, if a library name is not provided, the invocation must refer to a locally defined

function, or a CQL system function. Function resolution proceeds by attempting to match the

signature of the invocation, i.e. the number and type of each argument, to a defined signature for

the function. Because the CQL type system supports subtyping, generics, and implicit conversion

and casting, it is possible for an invocation signature to match multiple defined signatures. In

these cases, the least converting signature is chosen, meaning the signature with the fewest

required conversions. If multiple signatures have the same number of required conversions, an

ambiguous resolution error is thrown, and the author must provide an explicit cast or conversion

to resolve the ambiguity.

If a library name is provided, only that library will be searched for a resolution.

As with expressions, CQL supports forward declarations for functions, so long as the reference

does not result in a cycle.

3.3 Data Models

CQL allows any number of data models to be included in a given library, subject to the following

constraints:

• The data model identifier must be unique, both among data models, as well as libraries.

• Data model references are not included from referenced libraries. To reference the data

types in a data model, an appropriate local using declaration must be specified.

As with library references, data model references may include a version specifier. If a version is

specified, then the environment must ensure that the version specifier matches the version of the

data model supplied. If no data model matching the requested version is present, an error is

thrown.

3.3.1 Alternate Data Models

Although the examples in this specification generally use the QUICK model (part of the Clinical

Quality Framework), CQL itself does not require or depend on a specific data model. For

example, the following sample is taken from the CMS146v2_using_QDM.cql file in the

Examples section of the specification:

["Encounter, Performed": "Ambulatory/ED Visit"] E
 with ["Diagnosis": "Acute Pharyngitis"] P such that
 interval[P."start datetime", P."stop datetime")
 overlaps after interval[E."start datetime", E."stop datetime")

In this example, QDM is used as the data model. Note the use of quoted attribute identifiers to

allow for the spaces in the names of QDM attributes.

3.3.2 Multiple Data Models

Because CQL allows multiple using declarations, the possibility exists for clashes within retrieve

expressions. For example, a library that used both QUICK and vMR may clash on the name

Encounter. In general, the resolution process for class names within CQL proceeds as follows:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 95
© 2014-2017 Health Level Seven International. All rights reserved

• If the class name has no qualifier, then each model used in the current library is searched

for an exact match.

o If an exact match is found in more than one model, the reference is considered

ambiguous and an error is thrown that the class reference is ambiguous among the

matches found.

o If an exact match is found in only one model, that model and type is used.

o If no match is found in any model, an error is thrown that the referenced name

cannot be resolved.

• If the class name has a qualifier, then the qualifier specifies the model to be searched, and

only that model is used to attempt a resolution.

o If the qualifier specifies the name of a model that cannot be found in the current

library, an error is thrown that the referenced model cannot be found.

o If an exact match is found in the referenced model, that class is used.

o If no exact match is found, an error is thrown that the qualified class name cannot

be resolved.

3.4 Types

CQL is a statically typed language, meaning that it is possible to infer the type of any given

expression, and for any given operator invocation, the type of the arguments must match the

types of the operands. To provide complete support for the type system, CQL supports several

constructs for dealing with types including type specifiers, as well as conversion, casting, and

type-testing operators.

CQL uses a single-inheritance type system, meaning that each type is derived from at most one

type. Given a type T and a type T' derived from type T, the following statements are true:

• The type T is a supertype of type T'.

• The type T' is a subtype of type T.

• A value of type T' may appear anywhere a value of type T is expected.

3.4.1 System-Defined Types

CQL defines several base types that provide the elements for constructing other types, as well as

for defining the operations available within the language.

The maximal supertype is System.Any. All other types derive from System.Any, meaning that

any value is of some type, and also ultimately of type System.Any.

All the system-defined types derive directly from System.Any. The primitive types and their

ranges are summarized here:

Type Range Step Size

Boolean false..true N/A

Integer -2^31..2^31 – 1 1

DateTime @0001-01-01T00:00:00.0..@9999-12-31T23:59:59.999 1 millisecond

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 96
© 2014-2017 Health Level Seven International. All rights reserved

Decimal -10^28 – 10^-8..10^28 – 10^-8 10^-8

String All strings of length 2^31-1 or less. N/A

Time @T00:00:00.0..@T23:59:59.999 1 millisecond

TABLE 3-E

In addition, CQL defines several structured types to facilitate representation and manipulation of

clinical information:

Type Description

Code Represents a clinical terminology code, including the code identifier, system, version,
and display.

Concept Represents a single concept as a list of equivalent Codes.

Quantity Represents a quantity with a dimension, specified in UCUM units.

TABLE 3-F

For more information about these types, refer to the CQL Reference section on Types.

3.4.2 Specifying Types

In various constructs, the type of a value must be specified. For example, when defining the type

of a parameter, or when testing a value to determine whether it is of a specific type. CQL

provides the type specifier for this purpose. There are five categories of type-specifiers,

corresponding to the four categories of values supported by CQL, plus a choice type category

that allows for more flexible models and expressions:

• Named Types

• Tuple Types

• Interval Types

• List Types

• Choice Types

The named type specifier is simply the name of the type. For example:

parameter Threshold Integer

This example declares a parameter named Threshold of type Integer.

The tuple type specifier allows the names and types of the elements of the type to be specified.

For example:

parameter Demographics Tuple { address String, city String, zip String }

The interval type specifier allows the point-type of the interval to be specified:

parameter Range Interval<Integer>

The list type specifier allows the element-type of a list to be specified:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 97
© 2014-2017 Health Level Seven International. All rights reserved

parameter Points List<Integer>

And finally, the choice type specifier allows a choice type to be specified:

parameter ChoiceValue Choice<Integer, String>

3.4.3 Type Testing

CQL supports the ability to test whether or not a value is of a given type. For example:

5 is Integer

returns true because 5 is an Integer.

In general, the is relationship determines whether or not a given type is derived from another

type. Given a type T and a type T' derived from type T, the following definitions hold:

• Identity – T is T

• Subtype – T' is T

Note that because of the identity relationship above, the term subtype applies to all derived types,

as well as the type itself. In the discussions that follow, if a definition must explicitly refer to

only derived types, the term proper subtype will be used.

For interval types, given a point type P, and a point type P' derived from type P, interval type

Interval<P'> is a subtype of interval type Interval<P>.

For list types, given an element type E, and an element type E' derived from type E, list type

List<E'> is a subtype of list type List<E>.

For tuple types, given a tuple type T with elements E1, E2, ...En, names N1, N2, ...Nn, and types

T1, T2, ...Tn, respectively, a tuple type T' with elements E'1, E'2, ...E'n, names N'1, N'2, ...N'n, and

types T'1, T'2, ...T'n, type T' is a subtype of type T if and only if:

• The number of elements in each type is the same: |E| = |E'|

• For each element in T, there is one element in T' with the same name, and the type of the

matching element in T' is a subtype of the type of the element in T.

For structured types, the supertype is specified as part of the definition of the type. Subtypes

inherit all the elements of the supertype and may define additional elements that are only present

on the derived type.

3.4.4 Choice Types

CQL also supports the notion of a choice type, a type that is defined by a list of component types.

For example, an element of a tuple type may be a choice of Integer or String, meaning that the

element may contain a value that is either an Integer, or a String.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 98
© 2014-2017 Health Level Seven International. All rights reserved

In addition, choice types can be used to indicate the type of a list of mixed elements, such as the

result of a union:

[Procedure] union [Encounter]

This example results in a list that contains both Procedures and Encounters, and the resulting type

is Choice<Procedure, Encounter>.

An expression of a choice type can be used anywhere that a value of any of its component types

is expected, and an implicit cast will be used to restrict the choice type to the correct component

type.

For example, given an Observation type with an element value of type Choice<String, Code,

Integer, Decimal, Quantity>, the following expressions are all valid:

Observation.value + 12
Observation.value & ' (observed)'
Observation.value in "Valid Values"
Observation.value < 5 'mg'

These expressions will result in an implicit cast being applied as follows:

(Observation.value as Integer) + 12
(Observation.value as String) & ' (observed)'
(Observation.value as Code) in "Valid Values"
(Observation.value as Quantity) < 5 'mg'

The semantics for casting will result in a null if the run-time value of the element is not of the

appropriate type.

When accessing an element of a choice type with structured types as components, any element

can be accessed. Note, however, that if the element being accessed is present in multiple

components, the resulting expression may be a choice type if the elements have different types.

In addition, the choice type enables the set operations, union, intersect, and except to be

generalized to work on lists of different types.

For union, this means that the inputs can be lists of different types of elements, and the type of the

result is now a choice type with components of each of the input types. If the input types are the

same, the result is a choice with a single component which degenerates to the component type.

For intersect, this means the inputs can be lists of different types of elements, and the type of the

result is a choice with only the types that are common between the input types. Again, if this

results in a choice with a single component, it degenerates to the component type.

For except, this means that the inputs can contain lists of different types of elements, but because

the except may not exclude all the values of a given type, the result will be the same type as the

left input.

3.4.5 Type Inference

Type inference is the process of determining the type of an expression based on the types of the

values and operations involved in the expression. CQL is a strongly typed language, meaning that

it is always possible to infer the type of an expression at compile-time (i.e. by static analysis).

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 99
© 2014-2017 Health Level Seven International. All rights reserved

The type inference rules for the various categories of language constructs are given in the

following sections.

3.4.5.1 Literals and Selectors

The type of a literal is trivial for the primitive types and selectors: Boolean, String, Integer,

Decimal, DateTime, Time, and Quantity.

The type of the null selector is Any.

For a list selector, the type may be specified as part of the selector:

List<System.Integer> { 1, 2, 3 }

Or it may be inferred based on the types of the elements:

{ 1, 2, 3 }

For an empty list, with no specifier, the type is List<Any>.

If the type of a list is specified, the elements in the list are required to be of the declared element

type of the list.

If the type of the list is inferred, the type of the first element is used initially, and subsequent

elements in the list are required to be of the inferred type of the first element, with the exception

that if a subsequent element is a supertype of the initial element, or if the initial element is

convertible to the type of a subsequent element, the type of the subsequent element will become

the new inferred element type for the list.

For a tuple selector, the type is constructed from the elements in the tuple selector.

For an instance selector, the type is determined by the name of the type of the instance being

constructed.

3.4.5.2 Operators and Functions

In general, the result type of an operator or function is determined by the declared return type of

the function. For example, the (Integer, Integer) overload of the Add operator returns an Integer

value, so the type of an Add invocation is Integer:

3 + 4

The CQL Reference appendix gives the signatures and declared return types for all system

operators.

In addition to special cases for operators such as conditionals and Coalesce, CQL defines implicit

conversion, casting, and promotion and demotion to provide more flexible type checking rules.

These special cases are described in subsequent sections.

3.4.5.3 Queries

For queries, the type inference rules are based on the clauses used, beginning with single-source

queries:

1. For a single-source query, the initial type of the query is the type of expression defining

the single source. If the expression is singular (i.e. non-list-valued) the query ranges over

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 100
© 2014-2017 Health Level Seven International. All rights reserved

only that element. If the expression is plural, the query ranges over all the elements in the

list.

2. For a multi-source query, the initial type of the query is defined by a tuple where each

tuple has an element for each source in the query, named the alias name of the source, and

of the type of the expression defining the source. If all sources are singular the initial type

of the query is the singular tuple type. If any source is plural, the initial type of the query

is a list of the tuple type.

3. Let clauses only introduce content that can be referenced within the scope of the query,

they do not impact the type of the result unless referenced within a return clause.

4. With and without clauses only limit the set of results returned by a query, they do not

impact the type of the result.

5. A where clause only limits the set of results returned by the query, it does not impact the

type of the result.

6. The return clause determines the overall shape of the query result. If there is no return

clause, the result type of the query is the same as the initial type of the query as

determined based on the sources. If a return clause is used, the result type of the query is

inferred based on the return expression. If the query is singular, the result type is the type

of the return clause expression. If the query is plural, the result type is a list whose

element types are the type of the return expression.

3.4.6 Conversion

Conversion is the operation of turning a value from one type into another. For example,

converting a number to a string, or vice-versa. CQL supports explicit conversion operators, as

well as implicit conversion for some specific types.

3.4.6.1 Explicit Conversion

The explicit convert can be used to convert a value from one type to another. For example, to

convert the string representation of a date/time to a DateTime value:

convert '2014-01-01T12:00:00.0-06:00' to DateTime

If the conversion cannot be performed, a run-time error will be thrown. For example:

convert 'Foo' to Integer

will result in an error. The convert syntax is equivalent to invoking one of the defined explicit

conversion operators:

Operator Description

ToBoolean(String) Converts the string representation of a boolean value to a Boolean value

ToInteger(String) Converts the string representation of an integer value to an Integer value
using the format (+|-)d*

ToDecimal(Integer) Converts an Integer value to an equivalent Decimal value

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 101
© 2014-2017 Health Level Seven International. All rights reserved

ToDecimal(String) Converts the string representation of a decimal value to a Decimal value
using the format (+|-)d*.d*

ToQuantity(String) Converts the string representation of a quantity value to a Quantity value
using the format (+|-)d*.d*'units'

ToDateTime(String) Converts the string representation of a date/time value to a DateTime
value using ISO-8601 format: YYYY-MM-DDThh:mm:ss.fff(+|-)hh:mm

ToTime(String) Converts the string representation of a time value to a Time value using
ISO-8601 format: Thh:mm:ss.fff(+|-)hh:mm

ToString(Boolean) Converts a Boolean value to its string representation (true|false)

ToString(Integer) Converts an Integer value to its string representation

ToString(Decimal) Converts a Decimal value to its string representation

ToString(Quantity) Converts a Quantity value to its string representation

ToString(DateTime) Converts a DateTime value to its string representation

ToString(Time) Converts a Time value to its string representation

ToConcept(Code) Converts a Code value to a Concept with the given Code as its primary
and only Code. If the Code has a display value, the Concept will have the
same display value.

ToConcept(List<Code>) Converts a list of Code values to a Concept with the first Code in the list
as the primary Code. If the primary Code has a display value, the
Concept will have the same display value.

TABLE 3-G

FOR A COMPLETE DESCRIPTION OF THESE CONVERSION OPERATORS, REFER TO THE TABLE 9-E

Type Operators section in the CQL Reference.

3.4.6.2 Implicit Conversions

In addition to the explicit conversion operators discussed above, CQL supports the implicit

conversions for specific types to enable expressions to be built more easily. The following table

lists the explicit and implicit conversions supported in CQL:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 102
© 2014-2017 Health Level Seven International. All rights reserved

From\To Boolean Integer Decimal Quantity String Datetime Time Code Concept List(Cod
e)

Boolean N/A - - - Explicit - - - - -

Integer - N/A Implicit - Explicit - - - - -

Decimal - - N/A - Explicit - - - - -

Quantity - - - N/A Explicit - - - - -

String Explicit Explicit Explicit Explicit N/A Explicit Explicit - - -

Datetime - - - - Explicit N/A - - - -

Time - - - - Explicit - N/A - - -

Code - - - - - - - N/A Implicit -

Concept - - - - - - - - N/A Explicit

List(Code) Implicit N/A

TABLE 3-H

Although implicit conversions can be performed using the explicit convert, the language will also

automatically apply implicit conversions when appropriate to produce a correctly typed

expression. For example, consider the following multiplication:

define MixedMultiply: 1 * 1.0

The type of the literal 1 is Integer, and the type of the literal 1.0 is Decimal. To infer the type of

the expression correctly, the language will implicitly convert the type of the 1 to Decimal by

inserting a ToDecimal invocation. The multiplication is then performed on two Decimals, and the

result type is Decimal.

In addition, CQL defines implicit conversion of a named structured type to its equivalent tuple

type. For example, given the type Person with elements Name of type String and DOB of type

DateTime, the following comparison is valid:

define TupleComparison: Person { Name: 'Joe', DOB: @1970-01-01 } = Tuple { Name: 'Joe',
DOB: @1970-01-01 }

In this case, the structured value will be implicitly converted to the equivalent tuple type, and the

comparison will evaluate to true.

Note that the opposite implicit conversion, from a tuple to a named structured type, does not

occur because a named structured type has additional information (namely the type hierarchy)

that cannot be inferred from the definition of a tuple type. In such cases, an explicit conversion

can be used:

define TupleExpression: Tuple { Name: 'Joe', DOB: @1970-01-01 }
define TupleConvert: convert TupleExpression to Person

The conversion from a tuple to a structured type requires that the set of elements in the tuple type

be the same set or a subset of the elements in the structured type.

3.4.7 Casting

Casting is the operation of treating a value of some base type as a more specific type at run-time.

The as operator provides this functionality. For example, given a model that defines an

ImagingProcedure as a specialization of a Procedure, in the following example:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 103
© 2014-2017 Health Level Seven International. All rights reserved

define AllProcedures: [Procedure]
define ImagingProcedures:
 AllProcedures P
 where P is ImagingProcedure
 return P as ImagingProcedure

the ImagingProcedures expression returns all procedures that are instances of ImagingProcedure as

instances of ImagingProcedure. This means that attributes that are specific to ImagingProcedure

can be accessed.

If the run-time type of the value is not of the type specified in the as operator, the result is null.

In addition, CQL supports a strict cast, which has the same semantics as casting, except that if the

run-time type of the value is not of the type specified, a run-time error is thrown. The keyword

cast is used to indicate a strict cast:

define StrictCast: cast First(Procedures) as ImagingProcedure

3.4.7.1 Implicit Casting

CQL also supports the notion of implicit casting to prevent the need to cast a null literal to a

specific type. For example, consider the following expression:

define ImplicitCast: 5 * null

The type of the first argument to the multiplication is Integer, and the type of the second

argument is Any, an untyped null literal. But multipication of Integer and Any is not defined and

Any is a supertype of Integer, not a subtype. This means that with strict typing, this expression

would not compile without the addition of an explicit cast:

define ImplicitCast: 5 * (null as Integer)

To avoid the need for this explicit cast, CQL implicitly casts the Any to Integer.

3.4.8 Promotion and Demotion

To simplify the expression of logic involving lists and intervals, CQL defines promotion and

demotion, which are a special class of implicit conversions.

Promotion is used to implicitly convert a value to a list of values of that type. Whenever an

operation that expects a list-valued argument is passed a single value, the single value is

promoted to a list of the same type containing the single value as its only element.

Demotion is the opposite, used to implicitly extract a single value from a list of values. Whenver

an operation that expects a singleton is passed a list, the list is demoted to a singleton using

singleton from.

For intervals, promotion is performed by creating an interval with the single value as the start and

end of the interval, and demotion is performed using point from.

3.4.9 Conversion Precedence

Because of the possibility that a given invocation signature may be resolved to multiple

overloads of an operator through the application of different conversions, CQL specifies a

conversion precedence for resolving the ambiguity. When matching the invocation type of an

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 104
© 2014-2017 Health Level Seven International. All rights reserved

argument to the declared type of the corresponding argument of an operator, the following

precedence is applied:

1. Exact match – If the invocation type is an exact match to the declared type of the

argument

2. Subtype – If the invocation type is a subtype of the declared type of the argument

3. Compatible – If the invocation type is compatible with the declared type of the argument

(e.g., the invocation type is Any)

4. Implicit Conversion – An implicit conversion is defined from the invocation type of the

argument to the declared type of the argument

5. Demotion – The invocation type of the argument can be demoted to the declared type

6. Promotion – The invocation type of the argument can be promoted to the declared type

These conversion precedences can be viewed as ordered from least converting to most

converting. When determining a conversion path from an invocation signature to a declared

signature, the least converting overall conversion path should be used.

3.5 Conditional Expressions

To simplify the expression of complex logic, CQL provides two flavors of conditional

expressions, the if expression, and the case expression.

The if expression allows a single condition to select between two expressions:

if Count(X) > 0 then X[1] else 0

This expression checks the count of X and returns the first element if it is greater than 0;

otherwise, the expression returns 0. Note that if the condition evaluates to null, it is interpreted as

false.

The case expression allows multiple conditions to be tested, and comes in two flavors: standard

case, and selected case.

A standard case allows any number of conditions, each with a corresponding expression that will

be the result of the case if the associated condition evaluates to true. Note that as with the if

expression, if the condition evaluates to null, it is interpreted as false. If none of the conditions

evaluate to true, the else expression is the result:

case
 when X > Y then X
 when Y > X then Y
 else 0
end

A selected case specifies a comparand, and each case item specifies a possible value for the

comparand. If the comparand is equal to a case item, the corresponding expression is the result of

the selected case. If the comparand does not equal any of the case items, the else expression is the

result:

case X
 when 1 then 12

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 105
© 2014-2017 Health Level Seven International. All rights reserved

 when 2 then 14
 else 15
end

Note that if the source expression in a selected case is null, no condition will compare equal and

the result will be the else expression. If any case item is null, it will not compare equal to the

comparand.

3.6 Nullological Operators

To provide complete support for missing information, CQL supports several operators for testing

for and dealing with null results.

To provide a null result, use the null keyword:

null

To test whether an expression is null, use the null test:

X is null
X is not null

To replace a null with the result of an expression, use a simple if expression:

if X is null then Y else X

To return the first non-null expression among two or more expressions, use the Coalesce operator:

Coalesce(X, Y, Z)

which is equivalent to:

case
 when X is not null then X
 when Y is not null then Y
 else Z
end

In addition, CQL supports the boolean-test operators is [not] true and is [not] false. These

operators, like the null-test operator, only return true and false, they will not propagate a null

result.

X is true
X is not false

The first example will return true if X evaluates to true, false if X evaluates to false or null. The

second example will return true if X evaluates to true or null, false if X evaluates to false. Note

in particular that these operators are not equivalent to comparison of Boolean results using

equality or inequality.

3.7 String Operators

Although less common in typical clinical logic, some use cases require string manipulation. As

such, CQL supports a core set of string operators.

Like lists, strings are 0-based in CQL. To index into a string, use the indexer operator:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 106
© 2014-2017 Health Level Seven International. All rights reserved

X[0]

To determine the length of string, use the Length operator:

Length(X)

To determine the position of a given pattern within a string, use the PositionOf operator:

PositionOf('cde', 'abcdefg')

The PositionOf() operator returns the index of the starting character of the first argument in the

second argument, if the first argument can be located in the second argument. Otherwise,

PositionOf() returns -1 to indicate the pattern was not found in the string. To find the last

appearance of a given pattern, use PositionOf(), and to find patterns at the beginning and end of

a string, use StartsWith() and EndsWith(). Regular expression matching can be performed with

the Matches() and ReplaceMatches() operators.

To return a substring from a given string, use the Substring operator:

Substring('abcdefg', 0, 3)

This example returns the string 'abc'. The second argument is the starting index of the substring

to be returned, and the third argument is the length of the substring to be returned. If the length is

greater than number of characters present in the string from the starting index on, the result

includes only the remaining characters. If the starting index is less than 0, or greater than the

length of the string, the result is null. The third argument is optional; if it is not provided, the

substring is taken from the starting index to the end of the string.

To concatenate strings, use the + operator:

'abc' + 'defg'

Note that when using + with string values, if either argument is null, the result will be null. To

treat null as the empty string (''), use the & operator:

'abc' & 'defg'

To combine a list of strings, use the Combine operator:

Combine({ 'ab', 'cd', 'ef' })

The result of this expression is:

'abcdef'

To combine a list with a separator, provide the separator argument to the Combine operator:

Combine({ 'completed', 'refused', 'pending' }, ';')

The result of this expression is:

'completed;refused;pending'

To split a string into a list of strings based on a specific separator, use the Split operator:

Split('completed;refused;pending', ';')

The result of this expression is:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 107
© 2014-2017 Health Level Seven International. All rights reserved

{ 'completed', 'refused', 'pending' }

Use the Upper and Lower operators to return strings with upper or lowercase letters for all

characters in the argument.

3.8 Introducing Context in Queries

The CQL query construct provides for the ability to introduce named expressions that only exist

within the scope of a single query. The let clause of queries allows any number of definitions to

be provided. Each definition has access to all the available context of the query scope, as well as

the overall library scope. This feature is extremely useful for simplifying query logic by allowing

complex expressions to be defined and then reused within the context of a single query. For

example:

"Medications" M
 let ingredients: GetIngredients(M.rxNormCode)
 return
 ingredients I
 let
 adjustedDoseQuantity: EnsureMicrogramQuantity(M.doseQuantity),
 dailyDose:
 GetDailyDose(
 I.ingredientCode,
 I.strength,
 I.doseFormCode,
 adjustedDoseQuantity,
 M.dosesPerDay
),
 factor: GetConversionFactor(I.ingredientCode, dailyDose, I.doseFormCode)
 return {
 rxNormCode: M.rxNormCode,
 doseFormCode: I.doseFormCode,
 doseQuantity: adjustedDoseQuantity,
 dosesPerDay: M.dosesPerDay,
 ingredientCode: I.ingredientCode,
 ingredientName: I.ingredientName,
 strength: I.strength,
 dailyDose: dailyDose,
 mme: Quantity { value: dailyDose.value * factor, unit: dailyDose.unit + '/d' }
 }
 }

In this query, the same logic defined by the dailyDose expression can be reused multiple times in

the where clause, avoiding the need to repeat the calculation and making the intended meaning of

the logic much more clear.

Note also the ability to reference a previously defined let in the same scope, as in the use of

adjustedDoseQuantity in the definition of dailyDose.

3.9 Multi-Source Queries

In addition to the single-source queries discussed in the Author’s Guide, CQL provides multi-

source queries to allow for the simple expression of complex relationships between sets of data.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 108
© 2014-2017 Health Level Seven International. All rights reserved

Consider the following excerpt from the numerator of a measure for appropriate warfarin and

parenteral anticoagulation overlap therapy:

• Numerator =

o Patients who received warfarin and parenteral anticoagulation:

▪ Five or more days, with an INR greater than or equal to 2 prior to discontinuation of

parenteral therapy

▪ OR: Five or more days, with an INR less than 2 and discharged on overlap therapy

▪ OR: Less than five days and discharged on overlap therapy

We begin by breaking this down into the source components, Encounters, Warfarin Therapy, and

Parenteral Therapy:

define "Encounters": [Encounter: "Inpatient"] E
 where E.period during "Measurement Period"
define "Warfarin Therapy": [MedicationAdministration: "Warfarin"]
define "Parenteral Therapy": [MedicationAdministration: "Parenteral Anticoagulation"]

First, we establish that the encounter had both warfarin and parenteral anticoagulation therapies.

This is easy enough to accomplish using with clauses:

define "Encounters with Warfarin and Parenteral Therapies":
 "Encounters" E
 with "Warfarin Therapy" W such that W.effectiveTime starts during E.period
 with "Parenteral Therapy" P such that P.effectiveTime starts during E.period

However, the next step involves calculating the duration of overlap between the warfarin and

parenteral therapies, and a with clause only filters by a relationship, it does not introduce any data

from the related source. To allow queries like this to be easily expressed, CQL allows a from

clause to be used to start a query:

define "Encounters with Warfarin and Parenteral Therapies":
 from "Encounters" E,
 "Warfarin Therapy" W,
 "Parenteral Therapy" P
 where W.effectiveTime starts during E.period
 and P.effectiveTime starts during E.period

We now have both the encounter and the warfarin and parenteral therapies in context and can

perform calculations involving all three:

define "Encounters with overlapping Warfarin and Parenteral Therapies":
 from "Encounters" E,
 "Warfarin Therapy" W,
 "Parenteral Therapy" P
 where W.effectiveTime starts during E.period
 and P.effectiveTime starts during E.period
 and duration in days of (W.effectiveTime intersect P.effectiveTime) >= 5
 and Last([Observation: "INR Value"] I
 where I.applies during P.effectiveTime sort by I.applies).value >= 2

This gives us the first condition, namely that a patient was on overlapping warfarin and

parenteral therapies for at least 5 days, and the ending INR result associated with the parenteral

therapy is greater than or equal to 2.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 109
© 2014-2017 Health Level Seven International. All rights reserved

Next, we need to build criteria for the other cases, but these cases involve the same calculations,

just compared against different values, or in different ways. Rather than having to restate the

calculations multiple times, CQL allows a let clause to be used to introduce an intermediate

comutational result within a query:

define "Encounters with overlapping Warfarin and Parenteral Therapies":
 from "Encounters" E,
 "Warfarin Therapy" W,
 "Parenteral Therapy" P
 let
 overlapDuration: duration in days of (W.effectiveTime intersect P.effectiveTime),
 endingINR:
 Last([Observation: "INR Value"] I
 where I.applies during P.effectiveTime sort by I.applies
).value
 where W.effectiveTime starts during E.period
 and P.effectiveTime starts during E.period
 and (
 (overlapDuration >= 5 and endingINR >= 2)
 or (overlapDuration >= 5 and endingINR < 2
 and P.effectiveTime overlaps after E.period)
 or (overlapDuration < 5
 and P.effectiveTime overlaps after E.period)
)
 return E

Because the return clause in a query is optional, the type of the result of multi-source queries

with no return clause is defined as a list of tuples with an element for each source named the alias

for the source within the query and of the type of the elements of the source. For example:

from [Encounter] E, [MedicationStatement] M

The result type of this query is:

List<Tuple { E Encounter, M MedicationStatement }>

The result will be a list of tuples containing the cartesian product of all Encounters and

Medication Statements.

In addition, the default for return clauses is distinct, as opposed to all, so if no return clause is

specified, duplicates will be eliminated from the result.

3.10 Non-Retrieve Queries

In addition to the query examples already discussed, it is possible to use any arbitrary expression

as the source for a query. For example:

({ 1, 2, 3, 4, 5 }) L return L * 2

This query results in { 2, 4, 6, 8, 10 }. Note that the parentheses are required for arbitrary

expressions. A query source is either a retrieve, a qualified identifier, or a parenthesized

expression.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 110
© 2014-2017 Health Level Seven International. All rights reserved

The above example also illustrates that queries need not be based on lists of tuples. In fact, they

need not be based on lists at all. The following example illustrates the use of a query to redefine a

single tuple:

define FirstInpatientEncounter:
 First([Encounter] E where E.class = 'inpatient' sort by E.period.start desc)

define RedefinedEncounter:
 FirstInpatientEncounter E
 return Tuple {
 type: E.type,
 admissionDate: E.period.start
 dischargeDate: E.period.end
 }

In addition, even if a given query is based on a list of tuples, the results are not required to be

tuples. For example, if only the length of stay is required, the following example could be used to

return a list of integers representing the length of stay in days for each encounter:

[Encounter: "Inpatient"] E
 return duration in days of E.period

3.11 Defining Functions

CQL provides for the definition of functions. A function in CQL is a named expression that is

allowed to take any number of arguments, each of which has a name and a declared type. For

example:

define function CumulativeDuration(Intervals List<Interval<DateTime>>):
 Sum((collapse Intervals) X return duration in days of X)

This statement defines a function named CumulativeDuration that takes a single argument named

Intervals of type List<Interval<DateTime>>. The function returns the sum of duration in days of

the collapsed intervals given. This function can then be used just as any other system-defined

function:

define Encounters: [Encounter: "Inpatient Visit"]
define CD: CumulativeDuration(Encounters E return E.period)

These statements establish an expression named CD that computes the cumulative duration of

inpatient encounters for a patient.

Within the library in which it is defined, a function can be invoked directly by name. When a

function is defined in a referenced library, the local library alias must be used to invoke the

function. For example, assuming a library with the above function definition and referenced with

the local alias Core:

define Encounters: [Encounter: "Inpatient Visit"]
define CD: Core.CumulativeDuration(Encounters E return E.period)

In this example, the CumulativeDuration function must be invoked using the local library alias

Core.

Functions can be defined that reference other functions anywhere within any library and to any

degree of nesting, so long as the reference does not result in a circular reference.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 111
© 2014-2017 Health Level Seven International. All rights reserved

Functions can also be defined as external to support the ability to import functionality defined in

external libraries. If a function is defined external, the return type must be provided:

define function IsSubsumedBy(code Code, subsumingCode Code) returns Boolean : external

CQL does not prescribe the details for how external functions are resolved or implemented, only

that an implementation must accept the arguments as specified by the signature, and is expected

to return a value of the declared return type.

3.12 Using FHIRPath

FHIRPath is a general-purpose graph traversal language designed as a simple way to define paths

on a hierarchical data model such as FHIR. The language is used within the FHIR specification to

provide precise semantics for various items in the specification such as invariants and search

parameter paths. Because of the general-purpose nature of FHIRPath, CQL uses the basic

expression definition capabilities defined by FHIRPath for its core expression terms. In fact, the

ANTLR grammar for CQL imports the FHIRPath grammar and relies on the semantics defined

there to define the base expression functionality of CQL, in much the same way that XQuery

utilizes XPath to define its expression capabilities. In other words, CQL is a superset of

FHIRPath, meaning that any valid FHIRPath expression is also a valid CQL expression.

However, FHIRPath has various implicit conversions defined to simplify expression of common

path traversal scenarios. Because CQL is a type-safe language, some of this functionality can

optionally be restricted within CQL through the use of several language options, as described in

the following sections.

3.12.1 Path Traversal

Paths in FHIRPath are constructed by concatenating labels using a dot qualifier:

Patient.name.given

In this case, the path begins at the Patient expression and accesses the name property, followed

by the given property of each name. Because the given path invocation is targeting the list of

names, the property access is invoked for each name in the list, resulting in a list of all the given

elements for every name in the Patient.

However, because property access on a list may actually be the result of mistakenly expecting the

property to be singular, this behavior can be disabled with the disable-list-traversal option.

3.12.2 List Promotion and Demotion

In FHIRPath, all operations are defined to return collections, and operations that expect singleton

values are defined to throw an error when they are invoked with collections containing multiple

elements. In CQL, this behavior is implemented using list promotion and demotion.

Wherever an operator is defined to take a non-list-valued type as a parameter, list demotion

allows the arguments to be list-valued and are implicitly converted to a singleton value using the

singleton from operator:

Patient.name.given + ' ' + Patient.name.family

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 112
© 2014-2017 Health Level Seven International. All rights reserved

The disable-demotion option controls whether or not this expression is valid. With the option

enabled, the expression can be compiled, and will evaluate, so long as the run-time values of

given and family contain only a single element. With the option disabled, this expression will

no longer compile, and the list-valued arguments must be converted to a single value:

Patient.name.given.single() + ' ' + Patient.name.family.single()

This allows the compiler to help the author determine whether a singular value is expected and

appropriate, or if the author mistakenly assumed the attribute was singular, when in fact the data

model allows multiple values.

The disable-promotion option controls whether or not list promotion is allowed in the translator.

3.12.3 Missing Information

FHIRPath traversal operations are defined such that only values that are present are returned. In

other words, it does not define a null indicator to represent missing information. Instead, it uses

the empty collection ({ }) and propagates empty collections in expressions. In general, if the

input to an operator or function is an empty collection, the result is an empty collection. This

corresponds to the null propogation semantics of CQL, particularly with respect to the three-

valued logic semantics of the logical operators.

3.12.4 Type Resolution

The FHIRPath specification does not require strongly-typed interpretation. In particular, the

resolution of property names can be deferred completely to run-time, allowing for flexible use of

expressions such as .children() and .descendents(). However, because CQL is a strongly-

typed language, these types of expressions are required to be resolved at compile-time.

For example, consider the following FHIRPath:

Patient.children().name

This expression returns a list of the name elements of all the children of the Patient instance. To

accomplish this in CQL, the result of .children() is a list of elements of choice types, where

the types in the choice are the distinct set of types of child elements.

This approach enables the flexibility of FHIRPath expressions but still maintains compile-time

type resolution.

3.12.5 Method Invocation

The FHIRPath syntax is designed as a fluent API, meaning that operations are invoked using a

dot-invocation syntax. This functionality is supported in CQL using a syntactic method construct,

similar to a lambda function, that allows the invocation to be rewritten as an equivalent function

call. The method definition is allowed to declare context variables such as $this that can be

addressed in the body of the method.

This mechanism is then used to implement the FHIRPath operators, which are rewritten via the

lambda replacement as direct invocations of CQL. The detailed equivalents for all FHIRPath

operations are defined in the FHIRPath Function Translation Appendix.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 113
© 2014-2017 Health Level Seven International. All rights reserved

The disable-method-invocation option controls whether or not method-style invocation is

allowed in the translator.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 114
© 2014-2017 Health Level Seven International. All rights reserved

4 LOGICAL SPECIFICATION

This chapter describes the Expression Logical Model (ELM) and how it is used to represent

clinical knowledge within a quality artifact.

The ELM defines a mechanism for representing artifact logic independent of syntax and special-

purpose constructs introduced at the syntactic level. ELM is equivalent to CQL syntax in terms of

expressive power: every possible expression in CQL has an equivalent canonical-form expression

in ELM. Higher-level constructs such as timing phrases and implicit conversions are represented

in terms of the more primitive operators in ELM. This takes the burden of interpretation of

higher-level constructs off of implementers, allowing them to focus on the implementation of a

more primitive set of functionality.

Expressions within ELM are represented as Abstract Syntax Trees. ELM defines the base

Expression class, and all language elements and operators are then defined as descendants of the

base Expression. For example, the Add class descends from BinaryExpression, which introduces

two operands, each of type Expression. The Literal class descends from Expression and allows

primitive-typed values such as strings and integers to be represented directly. Using these classes,

the expression 2 + 2 can be represented as instances of the appropriate classes:

FIGURE 4-A

By combining instances of the appropriate classes of ELM, the logic for any expression can be

represented. Note that the type of the expression can be inferred from the representation, Integer

in this example.

The ELM consists of the following components:

• Expression – This component defines the core structures for representing expressions, as

well as the operations available within those expressions.

• Clinical Expression – This component extends the Expression component to introduce

expressions specific to the clinical quality domain.

• Library – This component defines the structure of a library, the container, and the basic

unit of sharing.

Each of these components is defined fully within the ELM UML model. This model is defined

formally as an XMI, and the model definition is also presented as an Enterprise Architect Project

file (.eap) for viewing.

The documentation provided here serves only as a high-level structural reference for the ELM.

The actual content of the specification is defined by the XMI file, and that provides the “source-

of-truth” for the ELM specification.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 115
© 2014-2017 Health Level Seven International. All rights reserved

Note that the semantics for the operations described here are defined both in the UML model as

comments on the node for each operator, as well as the equivalent CQL operation as defined in

Appendix B – CQL Reference.

4.1 Expressions

The ELM Expression component defines a mechanism for representing the structure of logic.

The following table lists the core elements defined by the ELM:

Expression Description

Expression Abstract base class for all expressions in ELM

UnaryExpression Abstract base class for unary expressions in ELM

BinaryExpression Abstract base class for binary expressions in ELM

TernaryExpression Abstract base class for ternary expressions in ELM

NaryExpression Abstract base class for n-ary expressions in ELM

TABLE 4-A

Every expression in ELM is represented as a descendant of the abstract base element Expression.

In addition, several abstract descendants are introduced to support the representation of unary,

binary, ternary, and n-ary operators. Note that an expression need not descend from one of these

descendants, it may descend from Expression directly.

4.2 Simple Values

Support for simple values is provided by the Literal class. This class defines properties to

represent the type of the value, as well as the value itself.

The following table lists the simple value classes available in ELM:

Expression Description

Literal Represents simple value literals

TABLE 4-B

The Literal class is used to represent values for simple primitive types: Boolean, String, Integer,

Decimal, DateTime, and Time.

The result type of a Literal is the type of the primitive being represented.

For more information on the primitive types, see the Types section in the CQL Reference.

4.3 Comparison Operators

ELM defines a standard set of comparison operators for use with simple values. Each comparison

operator takes two arguments of the same type, and returns a boolean indicating the result of the

comparison. Note that for comparison operators, if either or both operands evaluate to null, the

result of the comparison is null, not false.

The following table lists the comparison operators available in ELM:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 116
© 2014-2017 Health Level Seven International. All rights reserved

Expression Description

Equal Returns true if the operands are equal

Equivalent Returns true if the operands are equivalent

NotEqual Returns true if the operands are not equal

Less Returns true if the first operand is less than the second operand

LessOrEqual Returns true if the first operand is less than or equal to the second operand

Greater Returns true if the first operand is greater than the second operand

GreaterOrEqual Returns true if the first operand is greater than or equal to the second operand

TABLE 4-C

The following example illustrates a simple Equal comparison:

FIGURE 4-B

For more information on the semantics of the various comparison operators, see the Comparison

Operators section of the CQL Reference.

4.4 Logical Operators

ELM defines logical operators that can be used to combine the results of logical expressions. And

and Or can be used to combine any number of results, and Not can be used to invert the result of

any expression.

Note that these operators are defined with 3-valued logic semantics, allowing the operators to

deal consistently with missing information.

The following table lists the logical operators available in ELM:

Expression Description

And Returns the logical conjunction of its operands

Or Returns the logical disjunction of its operands

Not Returns the logical negation of its operand

Implies Returns the logical implication of its operands

Xor Returns the exclusive or of its operands

TABLE 4-D

The following example illustrates a simple And expression:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 117
© 2014-2017 Health Level Seven International. All rights reserved

FIGURE 4-C

For more information on the semantics of these operators, refer to the Logical Operators section

in the CQL Reference.

4.5 Nullological Operators

ELM defines several nullological operators that are useful for dealing with potentially missing

information. These are Null, IsNull, IsTrue, IsFalse, and Coalesce.

The following table lists the logical operators available in ELM:

Expression Description

Null Returns a typed null

IsNull Returns true if the argument is null, false otherwise

IsTrue Returns true if the argument is true, false otherwise

IsFalse Returns true if the argument is false, false otherwise

Coalesce Returns the first non-null argument, null if there are no non-null arguments

TABLE 4-E

For more information on the semantics of these operators, refer to the Nullological Operators

section in the CQL Reference.

4.6 Conditional Operators

ELM defines several conditional expressions that can be used to return different values based on

a condition, or set of conditions. These are the If (conditional) expression, and the Case

expression.

The conditional expression allows a simple condition to be used to decide between one

expression or another.

The case expression has two varieties, one that is equivalent to repeated conditionals, and one

that allows a specific comparand to be identified and compared with each item to determine a

result.

The following table lists the conditional operators available in ELM:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 118
© 2014-2017 Health Level Seven International. All rights reserved

Expression Description

If Allows for conditional evaluation between two expressions.

Case Allows for multiple conditional expressions, or a comparand with multiple cases.

TABLE 4-F

The following examples illustrates a simple If expression (i.e. if / then / else):

FIGURE 4-D

The following example illustrates a more complex multi-conditional Case expression:

FIGURE 4-E

And finally, an equivalent comparand-based Case expression:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 119
© 2014-2017 Health Level Seven International. All rights reserved

FIGURE 4-F

4.7 Arithmetic Operators

ELM provides a complete set of arithmetic operators to allow for manipulation of integer and real

values within artifacts. In general, these operators have the expected semantics for arithmetic

operators.

Note that if an operand evaluates to null, the result of the operation is defined to be null. This

provides consistent semantics when dealing with missing information.

The following table lists the arithmetic operators available in ELM:

Expression Description

Add Performs numeric addition of its arguments

Subtract Performs numeric subtraction of its arguments

Multiply Performs numeric multiplication of its arguments

Divide Performs numeric division of its arguments

TruncatedDivide Performs integer division of its arguments

Modulo Computes the remainder of the division of its arguments

Ceiling Returns the first integer greater than or equal to its argument

Floor Returns the first integer less than or equal to its argument

Truncate Returns the integer component of its argument

Abs Returns the absolute value of its argument

Negate Returns the negative value of its argument

Round Returns the nearest numeric value to its argument, optionally specified to a
number of decimal places for rounding

Ln Computes the natural logarithm of its argument

Log Computes the logarithm of its first argument, using the second argument as
the base

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 120
© 2014-2017 Health Level Seven International. All rights reserved

Exp Raises e to the power given by its argument

Power Raises the first argument to the power given by the second argument

Successor Returns the successor of its argument

Predecessor Returns the predecessor of its argument

MinValue Returns the minimum representable value for a type

MaxValue Returns the maximum representable value for a type

TABLE 4-G

The following example illustrates a simple Add expression:

FIGURE 4-G

For more information on the semantics of these operators, refer to the Arithmetic Operators

section in the CQL Reference.

4.8 String Operators

ELM defines a set of string operators to allow for manipulation of string values within artifact

definitions.

Indexes within strings are defined to be 0-based.

Note that except as noted within the documentation for each operator, if any argument evaluates

to null, the result of the operation is also defined to be null.

The following table lists the string operators available in ELM:

Expression Description

Concatenate Returns the concatenation of its arguments

Combine Combines a list of strings, optionally separating them with the given separator

StartsWith Returns true if the string starts with a given prefix

EndsWith Returns true if the string ends with a given suffix

Split Splits a string into a list of strings along a given separator

LastPositionOf Returns the starting position of the last appearance of a given pattern

Length Returns the length of its argument

Matches Returns true if the string matches a given regular expression pattern

ReplaceMatches Replaces matches of a given pattern with a given substitution

Upper Returns the upper case representation of its argument

Lower Returns the lower case representation of its argument

Indexer Returns the nth character of its argument

PositionOf Returns the starting position of a given pattern within a string

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 121
© 2014-2017 Health Level Seven International. All rights reserved

Substring Returns a substring of its argument

TABLE 4-H

For more information on the semantics of these operators, refer to the String Operators section in

the CQL Reference.

4.9 Date and Time Operators

ELM defines several operators for representating the manipulation of date and time values. These

operators are defined using a common precision type that allows the various precisions (e.g. day,

month, week, hour, minute, second) of time to be manipulated.

Except as noted within the documentation for each operator, if any argument evaluates to null,

the result of the operation is also defined to be null.

The following table lists the date and time operators available in ELM:

Expression Description

DateTimeComponentFrom Returns a specified component of its argument

Today Returns the date (with no time components specified) of the start
timestamp associated with the evaluation request

Now Returns the date and time of the start timestamp associated with the
evaluation request

TimeOfDay Returns the time-of-day of the start timestamp associated with the
evaluation request

DateTime Constructs a date/time value from its arguments

Time Constructs a time value from its arguments

DateFrom Returns the date (with no time component) of the argument

TimeFrom Returns the time of the argument

TimezoneFrom Returns the timezone offset (in hours) of the argument

SameAs Performs precision-based equality comparison of two date/time values

SameOrBefore Performs precision-based less-or-equal comparison of two date/time
values

SameOrAfter Performs precision-based greater-or-equal comparison of two date/time
values

Before Performs precision-based less-than comparison of two date/time values

After Performs precision-based greater-than comparison of two date/time
values

DurationBetween Computes the number of whole periods between two dates

DifferenceBetween Computes the number of whole period boundaries crossed between two
dates

TABLE 4-I

For more information on the semantics of these operators, refer to the Date/Time Operators

section in the CQL Reference.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 122
© 2014-2017 Health Level Seven International. All rights reserved

4.10 Interval Operators

ELM defines a complete set of operators for use in defining and manipulating interval values.

Constructing an interval is performed with the Interval expression, which allows the beginning

and ending of the interval to be specified, as well as whether the interval beginning and ending is

exclusive (open), or inclusive (closed).

ELM defines support for basic operations on intervals including determining length, accessing

interval properties, and determining interval boundaries.

ELM also supports complete operations involving comparisons of intervals, including equality,

membership testing, and inclusion testing.

In addition, the language supports operators for combining and manipulating intervals.

The following table provides a complete listing of the interval operators available in ELM:

Expression Description

Interval Constructs a new interval value

Equal Returns true if the arguments are the same interval

NotEqual Returns true if the arguments are not the same interval

Equivalent Returns true if the intervals are equivalent

Contains Returns true if the interval contains the given point

In Returns true if the given point is in the interval

Includes Returns true if the first interval completely includes the second (i.e., starts on
or before and ends on or after)

IncludedIn Returns true if the first interval is completely included in the second (i.e.,
starts on or after and ends on or before)

ProperIncludes Returns true if the first interval completely includes the second and the first
interval is strictly larger (i.e., includes and not equal)

ProperIncludedIn Returns true if the first interval is completely included in the second and the
second interval is strictly larger (i.e., included in and not equal)

Before Returns true if the first interval ends before the second one starts

After Returns true if the first interval starts after the second one ends

SameOrBefore Returns true if the first interval ends on or before the second one starts

SameOrAfter Returns true if the first interval starts on or after the second one ends

Meets Returns true if the first interval ends immediately before the second interval
starts, or if the first interval starts immediately after the second interval ends

MeetsBefore Returns true if the first interval ends immediately before the second interval
starts

MeetsAfter Returns true if the first interval starts immediately after the second interval
ends

Overlaps Returns true if the first interval overlaps the second

OverlapsBefore Returns true if the first interval starts before and overlaps the second

OverlapsAfter Returns true if the first interval ends after and overlaps the second

Union Returns the interval that results from combining the arguments

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 123
© 2014-2017 Health Level Seven International. All rights reserved

Expression Description

Intersect Returns the interval that results from the intersection of the arguments

Except Returns the interval that results from subtracting the second interval from
the first

Length Returns the length of the interval

Start Returns the starting point of the interval

End Returns the ending point of the interval

Starts Returns true if the first interval starts the second

Ends Returns true if the first interval ends the second

Collapse Returns the unique set of intervals that completely cover the range covered
by the given intervals

Width Returns the width of the interval

PointFrom Extracts a single point from a unit interval. If the interval is wider than one, an
error is thrown

TABLE 4-J

Note that ELM does not include a definition for During because it is synonymous with

IncludedIn.

For more information on the semantics of these operators, refer to the Interval Operators section

in the CQL Reference.

4.11 Structured Values

Structured values in ELM are values with sets of named elements (tuples), each of which may

have a value of any type. Structured values are most commonly used to represent clinical

information such as encounters, problems, and procedures.

The Tuple class represents construction of a new structured value, with the values for each

element supplied by TupleElement instances.

To access elements of a structured value, use the Property expression. A property expression has

a path attribute, an optional source element, and a value element. The source element returns the

structured value to be accessed. In some contexts, such as within a Filter expression, the source is

implicit. If used outside such a context, a source must be provided.

The path attribute specifies a property path relative to the source structured value. The property

expression returns the value of the property specified by the property path. Property paths are

allowed to include qualifiers (.) as well as indexers ([x]) to indicate that subelements should be

traversed. Indexers specified in paths must be literal integer values.

The following table lists the structured value operators available in ELM:

Expression Description

Tuple Constructs a new tuple value

Instance Constructs a new instance of a structured value

Property Returns the value of an element of a structured value

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 124
© 2014-2017 Health Level Seven International. All rights reserved

Expression Description

Equal Returns true if its arguments are equal

NotEqual Retruns true if its arguments are not equal

Equivalent Returns true if its arguments are equivalent

TABLE 4-K

The following example illustrates the construction of a tuple using the Tuple class:

FIGURE 4-H

The following example illustrates the construction of a structured value using the Instance class:

FIGURE 4-I

4.12 List Values

ELM allows for the expression and manipulation of lists of values of any type. The most basic

list operation is the List class, which represents a simple list selector.

Basic list operations include testing for membership, indexing, and content. ELM also supports

comparison of lists, including equality and inclusion determination (subset/superset). Supported

operations on single lists include filtering, sorting, and computation. For multiple lists, ELM

supports combining through union and intersection, as well as computing the difference.

The use of the scope attribute allows for more complex expressions such as correlated

subqueries.

ELM also supports a flattening operator, Flatten to construct a single list from a list of lists.

The following table provides a complete listing of the list operators available in ELM:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 125
© 2014-2017 Health Level Seven International. All rights reserved

Expression Description

List Constructs a list from its arguments

Exists Returns true if its argument contains any elements

Equal Returns true if its arguments have the same number of elements, and for
each element considered in order, the elements are equal

NotEqual Returns true if its arguments are not equal

Equivalent Returns true if its arguments are equivalent

Union Returns a list containing all the unique elements of its arguments

Except Returns a list containing only the elements in the first list that are not in
the second list

Intersect Returns a list containing only the elements that are in all of its arguments

Times Combines the elements from two lists, returning a list with an element for
each possible combination of elements from the source list.

Filter Returns a list containing only the elements for which the given condition
evaluates to true

SingletonFrom Extracts the single element from a list with at most one element.

IndexOf Returns the 0-based index of an element within the list, or 0 if the element
is not present

Indexer Returns the element at the given 0-based index in the list

In Returns true if the given element is in a given list

Contains Returns true if the given list contains a given element

Includes Returns true if every element in the second list is in the first list

IncludedIn Returns true if every element in the first list is in the second list

ProperIncludes Returns true if every element in the second list is in the first list, and the
first list is strictly larger than the second

ProperIncludedIn Returns true if the second list contains every element in the first list, and
the second list is strictly larger than the first

Sort Returns a list with the same elements, sorted by the given sort criteria

ForEach Returns a list whose elements are determined by evaluating a given
expression for each element in its argument

Flatten Flattens a list of lists into a single list with all the elements from every list
in the input. Duplicates are not eliminated by this operation

Distinct Returns a list that contains the unique elements within its argument

Current Returns the contents of the current scope

First Returns the first element in the given list

Last Returns the last element in the given list

Slice Returns a portion of the elements in the given list, beginning at a
startIndex and ending just before an endIndex

Repeat Returns a list whose elements are determined by evaluating a given
expression for each element in the argument, and repeating the
evaluation on the resulting list until no new elements are returned

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 126
© 2014-2017 Health Level Seven International. All rights reserved

TABLE 4-L

For more information on the semantics of these operators, refer to the List Operators section in

the CQL Reference.

4.13 Aggregate Operators

For computing aggregate quantities, ELM defines several aggregate operators. These operators

perform computations on lists of values, either on the elements of the list directly, or on a specific

property of each element in the list.

Unless noted in the documentation for each operator, aggregate operators deal with missing

information by excluding elements which have no value before performing the aggregation. In

addition, an aggregate operation performed over an empty list is defined to return null, except as

noted in the documentation for each operator (e.g. Count).

The following table lists the aggregate operators available in ELM:

Expression Description

Count Returns the number of non-null elements in the source

Sum Computes the sum of non-null elements in the source

Min Returns the minimum element in the source

Max Returns the max element in the source

Avg Returns the average of the elements in the source

Median Returns the median of the elements in the source

Mode Returns the mode of the elements in the source

Variance Returns the statistical variance of the elements in the source

PopulationVariance Returns the population variance of the elements in the source

StdDev Returns the standard deviation of the elements in the source

PopulationStdDev Returns the population standard deviation of the elements in the source

AllTrue Returns true if all the non-null elements in source are true

AnyTrue Returns true if any non-null element in source is true

TABLE 4-M

For more information on the semantics of these operators, refer to the Aggregate Functions

section in the CQL Reference.

4.14 Type Specifiers and Operators

ELM provides the following elements for type specifiers, testing, casting, and conversion:

Element Description

Is Returns true if the type of the argument is the given type

As Returns the argument as the type if it is of the given type, null otherwise

Convert Returns the argument converted to the given type, if possible. If no
conversion is possible, a run-time error is thrown

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 127
© 2014-2017 Health Level Seven International. All rights reserved

NamedTypeSpecifier Specifies a named type

IntervalTypeSpecifier Specifies an interval type

ListTypeSpecifier Specifies a list type

TupleTypeSpecifier Specifies a tuple type

Children Returns the values of all immediate children of the source

Descendents Returns the values of all children of the source, recursively

TABLE 4-N

FOR MORE INFORMATION ON THE SEMANTICS OF THESE OPERATORS, REFER TO THE TABLE 9-E

Type Operators section in the CQL Reference.

4.15 Queries

ELM provides a mechanism for expressing the structure of a query using the following classes:

Class Description

Query Defines a query in ELM, containing clauses as defined by the other
elements in this section.

AliasedQuerySource The AliasedQuerySource element defines a single source for inclusion in
the query context. The type of the source is determined by the expression
element, and the source can be accessed within the query context by the
given alias.

LetClause The LetClause element allows any number of expression definitions to be
introduced within a query context. Defined expressions can be referenced
by name within the query context.

With The With clause restricts the elements of a given source to only those
elements that have elements in the related source that satisfy the
suchThat condition. This operation is known as a semi-join in database
languages.

Without The Without clause restricts the elements of a given source to only those
elements that do not have elements in the related source that satisfy the
suchThat condition. This operation is known as a semi-difference in
database languages.

SortClause The SortClause element defines the sort order for the query, and is made
up of any number of elements that are descendants of the SortByItem
class (ByDirection, ByColumn, or ByExpression).

ByDirection Indicates that the sort should be performed ascending or descending.
This sortByItem can only appear by itself in a sort clause, and is used
when the query is based on a list of non-tuple-valued elements.

ByColumn Indicates that the sort should be performed based on the values of a
specified column.

ByExpression Indicates that the sort should be performed based on the result of an
expression.

ReturnClause The ReturnClause element defines the shape of the result set of the
query.

AliasRef Within a Query, references a defined alias

QueryLetRef Within a Query, references an introduced let expression

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 128
© 2014-2017 Health Level Seven International. All rights reserved

TABLE 4-O

For more information on query semantics, refer to the Queries section of the Author’s Guide, as

well as the Multi-Source Queries and Non-Retrieve Queries sections of the Developer’s Guide.

4.16 Reusing Logic

ELM provides a mechanism for reusing expressions by declaring a named expression. This

construct is similar to a function call with no parameters in a traditional imperative language,

with the exception that since ELM is a pure-functional system, the result of the evaluation could

be cached by an implementation to avoid performing the same computation multiple times.

In addition, ELM provides a more traditional function call with named parameters that can then

be accessed by the expression in the function body, and passed as part of the call from the

invoking context.

The ExpressionDef class is used to define a named expression that can then be referenced by

other expressions. The FunctionDef class is used to define a function and its parameters.

Note that circular expression references are not allowed, but that named expressions can be

defined in any order, so long as the actual references do not result in a cycle.

The following table lists the expression definition components available in ELM:

Expression Description

ExpressionDef Defines a named expression that can be referenced by other expressions

ExpressionRef Returns the result of evaluating a named expression

FunctionDef Defines a function that can be referenced by other expressions, or within
the body of other functions.

FunctionRef Returns the result of evaluating a function with the given arguments

TABLE 4-P

The ExpressionDef class introduces the notion of context which can be either Patient or

Population. This context defines how the contained expression is evaluated, either with respect to

a single patient, defined by the evaluation environment, or with respect to a population. For more

information about patient context, please refer to the External Data section.

4.17 External Data

All access to external data within ELM is represented by Retrieve expressions.

The Retrieve class defines the data type of the request, which determines the type of elements to

be returned. The result will always be a list of values of the type specified in the request.

The type of the elements to be returned is specified with the dataType attribute of the Retrieve,

and must refer to the name of a type within a known data model specified in the dataModels

element of the library definition.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 129
© 2014-2017 Health Level Seven International. All rights reserved

In addition, the Retrieve introduces the ability to specify optional criteria for the request. The

available criteria are intentionally restricted to the set of codes involved, and the date range

involved. If these criteria are omitted, the request is interpreted to mean all data of that type.

Note that because every expression is being evaluated within a context (either Patient or

Population) as defined by the containing ExpressionDef, the data returned by a retrieve depends

on the context. For the Patient context, the data is returned for a single patient only, as defined by

the evaluation environment. Whereas for the Population context, the data is returned for all

patients.

The following table lists the expressions relevant to defining external data in ELM:

Expression Description

Retrieve Defines clinical data that will be used within the artifact

TABLE 4-Q

4.18 Clinical Operators

For working with clinical data, ELM defines operators for terminology sets, quantities, and

calculating age.

The following table lists the classes representing clinical information in ELM:

Class Description

CodeSystemDef Defines a code system identifier that can be referenced by name

CodeSystemRef References a code system by its previously defined name

InCodeSystem Tests a string, code, or concept for membership in a codesystem

ValueSetDef Defines a valueset identifier that can be referenced by name

ValueSetRef References a valueset by its previously defined name

InValueSet Tests a string, code, or concept for membership in a valueset

CodeDef Defines a code identifier that can be referenced by name

CodeRef References a code by its previously defined name

ConceptDef Defines a concept identifier that can be referenced by name

ConceptRef References a concept by its previously defined name

Code Selects an existing code from a defined codesystem

Concept Selects an existing concept containing a list of codes

Quantity Returns a clinical quantity with a specified unit

CalculateAge Calculates the age in the specified precision of a person born on the
given date as of today.

CalculateAgeAt Calculates the age in the specified precision of a person born on the first
date as of the second date.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 130
© 2014-2017 Health Level Seven International. All rights reserved

TABLE 4-R

4.19 Parameters

In addition to external data, ELM provides a mechanism for defining parameters to an artifact. A

library can define any number of parameters, each of which has a name, and a defined type, as

well as an optional default value.

Parameter values, if any, are expected to be provided as part of the evaluation request, and can be

accessed with a ParameterRef expression in any expression throughout the library.

The following table lists the expressions relevant to parameters in ELM:

Expression Description

ParameterDef Defines a parameter to the artifact

ParameterRef Returns the value of a parameter

TABLE 4-S

4.20 Data Model

ELM does not reference any specific data model, and so can be used to represent logic expressed

against any data model. These data models are specified using the UsingDef class. This class

provides attributes for specifying the name and version of the data model. An ELM library can

reference any number of models.

The name of the model is an implementation-specific identifier that provides the environment

with a mechanism for finding the model description. The details of how that model description is

provided are part of the physical representation.

The following table lists the elements relevant to data models in ELM:

Element Description

UsingDef Defines a data model that can be used by expressions within the library

TABLE 4-T

4.21 Libraries

ELM defines the notion of a library as the basic container for logic constructs. Libraries consist

of sets of declarations including data model references, library references, valueset definitions,

parameters, functions, and named expressions. The Library class defines this unit and defines

properties for each of these types of declarations.

Once defined, libraries can then be referenced by other libraries with the IncludeDef class, which

defines properties for the name and version of the library being referenced, as well as a local

name that is used to access components of the library.

The following table lists the elements relevant to libraries in ELM:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 131
© 2014-2017 Health Level Seven International. All rights reserved

Element Description

IncludeDef Defines a library reference; public components of the included library can
be referenced by components of the referencing library.

VersionedIdentifier Defines the versioned identifier construct used to label the various
declarations throughout ELM

TABLE 4-U

4.22 Errors and Messages

ELM defines a utility operation that is useful for generating run-time messages, warnings, traces,

and errors. The operator is a single, general-purpose function intended to provide a single

implementation point for messaging and run-time error functionality when those messages are

generated from ELM logic.

Element Description

Message Provides a mechanism for generating and returning messages,
warnings, errors, and traces to the calling environment.

The source parameter is always a generic value, which is always the result of the operator and is

purely passthrough. This allows the operation to appear at any point in any expression of ELM.

The optional condition parameter determines whether or not the message is generated. If no

condition is supplied, the default is true and the message is generated.

There is an optional code parameter which allows a coded representation of the message. (Note

this is an error token such as an integer or string, not a clinical terminology Code).

There is an optional severity parameter which allows the severity of the message to be specified,

one of:

• Message – The operation produces an informational message that is expected to be made

available in some way to the calling environment.

• Warning – The operation produces a warning message that is expected to be made

conspicuously available to the calling environment, potentially to the end-user of the

logic.

• Trace – The operation produces an informational message that is expected to be made

available to a tracing mechanism such as a debug log in the calling environment.

• Error – The operation produces a run-time error and return the message to the calling

environment. This is the only severity that stops evaluation. All other severities continue

evaluation of the expression.

If no severity is supplied, a default severity of Message is assumed.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 132
© 2014-2017 Health Level Seven International. All rights reserved

5 LANGUAGE SEMANTICS

This section contains more detailed information relating to the intended semantics of the Clinical

Quality Language. These topics are specifically relevant for readers interested in building

translation, semantic validation, or evaluation applications for CQL.

Note that the semantics are described here with reference to the representation defined by the

ELM, but because CQL syntax is equivalent to ELM, the semantics apply to CQL as well.

5.1 Clinical Data Retrieval in Quality Artifacts

This section discusses the problem of clinical data retrieval in the clinical quality space in

general, and how the problem is addressed in the CQL specification.

5.1.1 Defining Clinical Data

The problem of determining what data is required in the evaluation of an artifact containing

arbitrary queries against the data model is equivalent to the problem of query containment from

database theory. This problem is known to be undecidable for arbitrary queries of the relational

algebra, but is also shown to be both decidable and equivalent to the problem of query evaluation

for the restricted class of conjunctive queries (Foundations of Databases, Abiteboul, Hull, Vianu).

In the health quality domains of measurement and improvement, this problem is further

complicated by the problem of terminology mapping. The meaning of a particular clinical

statement within a patient’s data is represented with a vocabulary consisting of codes which

determine the type of statement being represented. For example, a diagnosis clinical statement

may be classified using the ICD-9 vocabulary, identifying the specific diagnosis represented.

In order for health quality artifacts to operate correctly, the meaning of each clinical statement, as

identified by the vocabularies involved, must be preserved. However, this meaning is often

represented in different vocabularies in different systems. A mapping between the vocabularies is

therefore required in order to facilitate expression and evaluation of the artifact.

In addition, patient data is represented in differing schemas across various patient data sources,

and must therefore be mapped structurally into the patient data model used by an artifact.

These problems collectively constitute what is referred to as the “curly braces problem” in the

Arden space. This problem arises because of the difficulty in defining the structural and semantic

aspects of the data involved.

The solution to this problem proposed by the CQL specification is to create a well-defined and

relatively simple interface between the clinical data provided by patient data sources, and the

usage of that data within the artifact.

First, all clinical data within a CQL artifact is represented using a common, standard data model.

This allows content to be authored without regard to the specific data models used by various

patient data sources.

Second, all references to clinical data within a quality artifact are represented using a specific

type of expression that only allows a well-defined set of clinically relevant criteria to be used to

reference the data. The purpose of this restriction is two-fold: First, it allows the data required for

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 133
© 2014-2017 Health Level Seven International. All rights reserved

evaluation to be determined solely by inspection of the artifact. And second, it allows for easy

and reliable implementation of the interface between the evaluation engine and the patient data

source, because the criteria used to request information from the patient data source are simple

and well-defined.

Third, by using standard terminologies within this data interface, the CQL specification can

guarantee that any given clinical statement referenced in an artifact has the same meaning as the

data that is provided to the artifact from the patient data source. At a high level, this is the

terminology problem; ensuring that the vocabularies used within the artifact are accurately

mapped to the vocabularies used by the patient data source.

These three motivating factors inform the design of the retrieve expression (Retrieve element in

ELM) used within the CQL specification.

5.1.2 Conformance Levels

Even though CQL and ELM are intended to be used with a standard data model, there are many

possibilities for variance in the way that data is provided, even within a particular model. This

problem leads to the potential for artifacts to reference properties within the model that may or

not be provided within a given specific instance of patient data. To address this potential

problem, the retrieve elements within ELM specify not only the type of the data (meaning the

specific model type being retrieved), but optionally a template, or profile identifier that further

constrains the data that is expected in a given retrieve. If a template identifier is provided, then

the retrieve expression is expected to return only data that matches the constraints in the given

template.

For example, consider the following retrieve element:

<operand xsi:type="Retrieve"
 dataType="quick:Condition"
 templateId="qicore-condition"
 codeProperty="code">
 <codes xsi:type="ValueSetRef" name="Other Female Reproductive Conditions"/>
</operand>

In this example, the data type is specified as "quick:Condition", indicating that the result of the

retrieve is a list of Condition instances. In addition, each instance must conform to the profile

defined by the identifier "qicore-condition".

To help communicate validity of an artifact for a specific use, this specification defines two

conformance levels related to this use of templates:

5.1.2.1 Strict Conformance

A quality artifact can be said to be strictly conforming if all references to clinical statement

model properties (elements and attributes of model types) within the artifact are explicitly

constrained by the templates used in the retrieves.

5.1.2.2 Loose Conformance

A quality artifact can be said to be loosely conforming if the artifact references properties that are

not explicitly constrained by the templates used in the retrieves. This is not to say that the artifact

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 134
© 2014-2017 Health Level Seven International. All rights reserved

is necessarily invalid, just that the instances of clinical data provided to the retrieve may or may

not contain the elements referenced by properties within the artifact.

5.1.3 Artifact Data Requirements

Because of the way data access is modeled within CQL, the data requirements of a particular

artifact can be clearly and accurately defined by inspecting only the Retrieve expressions defined

within the artifact. The following table broadly describes the data defined by each retrieve:

Item Description

Clinical Data Type The type of clinical data to be retrieved. This includes both the data
type and the template identifier.

Codes The set of codes defining the clinical data. Only clinical data with
matching codes (based on the code path of the retrieve) in the set
will be retrieved. If no codes are specified, clinical data with any code
will be retrieved.

Date Range The date range for clinical data. Only data within the specified date
range (based on the date range path of the retrieve) will be retrieved.
If no date range is specified, clinical data of any date will be
retrieved.

TABLE 5-A

These criteria are designed to allow the implementation environment to communicate the data

requirements for an artifact, or group of artifacts, to a consumer to allow the consumer to gather

all and only the relevant clinical information for transport to the evaluation environment. This

supports the near-real-time clinical decision support scenario where the evaluation environment

is potentially separate from the medical records system environment.

To support further reducing the overall size of data required to be transported, the following steps

can be taken to combine retrieve descriptors that deal with the same type of clinical data.

First, create a retrieve context for each unique type of retrieve using the retrieve data type (and

template identifier) for each retrieve. Note that if the determination here involves dynamic

information, the retrieve is not considered “initial” and could result in additional data being

requested by the engine in order to complete the evaluation. An implementation environment

may opt to restrict artifacts to only those that contain statically determined data requirements.

Next, for each retrieve, add the codes to the matching retrieve context (by data type), recording

the associated date range, if any, for each code. Note that the empty set of codes should be

represented as the single code “ALL” for the purposes of this method. As date ranges are

recorded, they must be merged so that for each code in each retrieve context, no two date range

intervals overlap or meet.

Once the date ranges for each code within each unique retrieve context are determined, the

unique set of date ranges for all codes is calculated, accumulating the set of associated codes.

Each unique date range for the context then results in a final descriptor. As part of this process,

the “ALL” placeholder code is replaced with the empty set of codes.

This process produces a set of clinical data descriptors with the following structure:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 135
© 2014-2017 Health Level Seven International. All rights reserved

Property Description

Clinical Data Type The type of clinical data required (including template identifier)

Codes The set of applicable codes, possibly empty (meaning all codes)

Date Range The applicable date range, possibly empty (meaning all dates)

TABLE 5-B

Collectively, these descriptors then represent the minimum initial data requirements for the

artifact, with any overlapping requests for the same type of data collapsed into a single request

descriptor.

Note that for the purposes of this method, the notion of the Clinical Data Type must be inclusive

of the attributes used for filtering the codes and date ranges. For example, a retrieve of Condition

data filtered by code must be considered separately from a retrieve of Condition data filtered by

severity.

In addition to being used to describe the initial data requirements, this same process can be used

to collapse additional data retrieves that are encountered as part of further evaluation of the

artifact.

5.2 Expression Language Semantics

In order to completely specify the semantics of the expression logic defined by CQL, the

intended execution model for expressions must be clearly defined. The following sections discuss

the conceptual components of the expression language, and how these components are defined to

operate.

5.2.1 Data Model

The data model for CQL provides the overall structure and definition for the types of operations

and capabilities that can be represented within the language. Note that the schema itself is layered

into a core expression schema, and a more specific, clinical expression schema. The expression

schema deals with defining the core operations that are available without respect to any specific

model. The clinical expression schema then extends those operations to include references to

clinical data.

Note that although the expression language deals with various categories of types, these are only

conceptually defined within the expression language schema. There is no expectation within the

core expression language that any particular data model be used, only that whatever concrete data

model is actually used can be concretely mapped to the type categories defined within CQL.

Because these type categories are extremely broad, this allows the CQL expression language

component to be used with a large class of concrete data models without modifying the

underlying specification.

5.2.1.1 Values

A value within CQL represents some piece of data. All values are of some type, which designates

what operations can be performed on the value. There are four categories of types within CQL:

1. Simple types – Types representing simple values such as strings, integers, dates, and

decimals

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 136
© 2014-2017 Health Level Seven International. All rights reserved

2. Structured types – Types representing composite values consisting of sets of named

properties, each of which has a declared type, that may or may not have a current value of

that type.

3. Collection types – Types representing lists of values of some declared type

4. Interval types – Types representing an interval of some declared type, called the point

type

5.2.1.2 Simple Types

Simple types allow for the representation of simple, atomic types, such as integers and strings.

For example, the value 5 is a value of type Integer, meaning that it can be used in operations that

require integer-valued input such as addition or comparison.

Note that because CQL defines a set of basic supported types, an implementation must map these

types to the equivalent types in the selected data model. Ideally, this mapping would occur as part

of the data access layer to isolate the mapping and minimize complexity.

5.2.1.3 Structured Types

Structured types allow for the representation of composite values. Typically, these types

correspond to the model types defined in the clinical data model used for the artifact. Structured

types are defined as containing a set of named properties, each of which are of some type, and

may have a value of that type.

As with simple types, the core expression layer does not define any structured types, it only

provides facilities for constructing values of structured types and for operating on structured

values.

5.2.1.4 Collection Types

Collection types allow for the representation of lists and sets of values of any type. All the values

within a collection are expected to be of the same type.

Collections may be empty, and are defined to be 0-based for indexing purposes.

5.2.1.5 Interval Types

Interval types allow for the representation of ranges over some point type. For example, an

interval of integers allows the expression of the interval 1 to 5. Intervals can be open or closed at

the beginning and/or end of the interval, and the beginning or end of the interval can be

unspecified.

The core expression layer does not define any interval types, it only provides facilities for

constructing values of interval types, and for operating on intervals.

5.2.2 Language Elements

The expression language represented by the ELM is defined as an Abstract Syntax Tree. Whereas

a traditional language would have syntax and require lexical analysis and parsing, using the ELM

exclusively allows expressions to be represented directly as trees. This removes potential

ambiguities such as operator order precedence, and makes analysis and processing of the

expressions in the language much easier.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 137
© 2014-2017 Health Level Seven International. All rights reserved

Concretely, this is accomplished by defining the language elements as classes in a UML model.

Each language element is represented by a type in the UML model. For example, the Literal class

represents the appearance of a literal expression, and has attributes for specifying the type of the

literal, as well as its actual value.

Arguments to operations are represented naturally using the hierarchical structure of the model.

For example, the Add operator is represented as a BinaryExpression descendant, indicating that

the operation takes two arguments, each of which is itself an expression.

This general structure allows expressions of arbitrary complexity to be built up using the

language elements defined in the schema. Essentially, the language consists of only two kinds of

elements: 1) Expressions, and 2) Expression Definitions (including Functions).

Each expression returns a value of some type, and an expression or function definition allows a

given expression to be defined with an identifier so that it can be referenced in other expressions.

These expressions and expression definitions are then used throughout the CQL specification

wherever logic needs to be defined within an artifact.

5.2.3 Semantic Validation

Semantic Validation of an expression within CQL is the process of verifying that the meaning of

the expression is valid. This involves determining the type of each expression, and verifying that

the arguments to each operation have the correct type.

This process proceeds as follows:

The graph of the expression being validated is traversed to determine the result type of each

node. If the node has children (operands) the type of each child is determined in order to

determine the type of the node. The following table defines the categories of nodes and the

process for determining the type of each category:

Node Category Type Determination

Literal The type of the node is the type of the literal being represented.

Property The type of the node is the declared type of the property being
referenced.

ParameterRef The type of the node is the parameterType of the parameter being
referenced.

ExpressionRef The type of the node is the type of the expression being referenced.

Retrieve The type of the node is a list of the type of the data being requested.

FunctionRef/
Operator

Generally, the type of the node is determined by resolving the type of
each operand, and then using that signature to determine the
resulting type of the operator.

ValueSetRef The type of the node is a list of codes.

Query If the query has a return clause, the result is a list of the type of the
return expression. Otherwise, the result type is determined by the
source of the query.

AliasRef The type of the node is the element type of the type of the query
source referenced by the alias.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 138
© 2014-2017 Health Level Seven International. All rights reserved

QueryLetRef The type of the node is the type of the referenced expression
defined within the query context.

TABLE 5-C

During validation, the implementation must maintain a stack of symbols that track the types of

the objects currently in scope. This allows the type of context-sensitive operators such as Current

and Property to be determined. Refer to the Execution Model (5.2.4) section for a description of

the evaluation-time stack.

Details for the specifics of type determination for each operator are provided with the

documentation for those operators.

5.2.4 Execution Model

All logic in CQL is represented as expressions. The language is pure functional, meaning no

operations are allowed to have side effects of any kind. An expression may consist of any number

of other expressions and operations, so long as they are all combined according to the semantic

rules for each operation as described in the Semantic Validation (5.2.3) section.

Because the language is pure functional, every expression and operator is defined to return the

same value on every evaluation within the same artifact evaluation. In particular this means:

1. All clinical data returned by request expressions within the artifact must return the same

set on every evaluation. An implementation would likely use a snapshot of the required

clinical data in order to achieve this behavior.

2. Invocations of non-deterministic operations such as Now() and Today() are defined to

return the timestamp associated with the evaluation request, rather than the clock of the

engine performing the evaluation.

Once an expression has been semantically validated, its return type is known. This means that the

expression is guaranteed to return either a value of that type, or a null, indicating the evaluation

did not result in a value.

In general, operations are defined to result in null if any of their arguments are null. For example,

the result of evaluating 2 + null is null. In this way, missing information results in an unknown

result. There are exceptions to this rule, notably the logical operators, and the null-handling

operators. The behavior for these operators (and others that do not follow this rule) are described

in detail in the documentation for each operator.

Evaluation takes place within an execution model that provides access to the data and parameters

provided to the evaluation. Data is provided to the evaluation as a set of lists of structured values

representing a patient’s clinical information. In order to be represented in this data set, a given

structured value must be a cacheable item. A cacheable item must have the following:

Property Description

Identifier A property or set of properties that uniquely identify the item

Codes A code or list of codes that identify the associated clinical codes for the item

Date A date time defining the clinically relevant date and/or time of the item

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 139
© 2014-2017 Health Level Seven International. All rights reserved

TABLE 5-D

Evaluation consists of two phases, a pre-processing phase, and an evaluation phase. The pre-

processing phase is used to determine the initial data requirements for a rule. During this phase

any retrieve expressions in the rule are analyzed to determine what data must be provided to the

evaluation in order to successfully complete a rule evaluation. This set of data descriptors is

produced using the method described in the Artifact Data Requirements (5.1.3) section. This

means in particular that only retrieves whose Codes and DateRange expressions are compile-time

evaluable should be considered to determine initial data requirements. This means that these

expressions may not reference any clinical information, though they are allowed to reference

parameter values.

During the evaluation phase, the result of the expression is determined. Conceptually, evaluation

proceeds as follows:

The graph of the expression being evaluated is traversed and the result of each node is calculated.

If the node has children (operands), the result of each child is evaluated before the result of the

node can be determined. The following table describes the general categories of nodes and the

process of evaluation for each:

Node Category Evaluation

Literal The result of the node is the value of the literal represented.

FunctionRef/Operation The result of the node is the result of the operation described by the node
given the results of the operand nodes of the expression.

Retrieve The result of the node is the result of retrieving the data represented by the
retrieve—i.e., a list of structured values of the type defined in the retrieve
representing the patient information being retrieved.

ExpressionRef The result of the node is the result of evaluating the referenced expression.

ParameterRef The result of the node is the value of the referenced parameter.

ValueSetRef The result of the node is the expansion set of the referenced value set
definition. Note that in the case of the InValueSet operator specifically, the
expansion set need not be materialized; the membership test can be
passed to a terminology service using only the valueset definition
information.

TABLE 5-E

During evaluation, the implementation must maintain a stack that is used to represent the value

that is currently in context. Certain operations within the expression language are defined with a

scope, and these operations use the stack to represent this scope. The following table details these

operations:

Operation Stack Effect

Query Query evaluation is discussed in detail below.

Filter For each item in the source operand, the item is pushed on to the stack,
the condition expression is evaluated, and the item is popped off of the
stack.

ForEach For each item in the source operand, the item is pushed on to the stack,
the element expression is evaluated, and the item is popped off of the
stack.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 140
© 2014-2017 Health Level Seven International. All rights reserved

TABLE 5-F

The scope attribute of these operators provides an optional name for the item being pushed on to

the stack. This name can be used within the Current and Property expressions to determine

which element on the stack is being accessed. If no scope is provided, the top of the stack is

assumed.

Details for the evaluation behavior of each specific operator are provided as part of the

documentation for each operator.

5.3 Query Evaluation

In general, query evaluation can be performed in many different ways, especially when queries

involve large numbers of sources. Rather than address the many ways queries could be evaluated,

the intent of this section is to describe the expected semantics for query evaluation, regardless of

how the underlying implementation actually executes any given query.

The outline of the process is:

• Evaluate the sources

• For each item in the source

o evaluate any defines within the query

o evaluate each with or without clause in the query

o evaluate the where clause, if present

o evaluate the return clause

• Sort the results if a sort clause is present

The following sections discuss each of these steps in more detail.

5.3.1 Evaluate Sources

The first step in evaluation of a given query is to establish the query sources. Conceptually, this

step involves generating the cartesian product of all the sources involved. In a single-source

query, this is simply the source. But for a multi-source query, the evaluation needs to be

performed for every possible combination of the sources involved.

How this actually occurs is up to the specific implementation, but note that the evaluation must

still be able to reference components originating from each individual source using the alias for

the source defined in the query. A simple solution to allowing this is to define the query source

internally as a list of tuples, each with an element for each source whose value is the tuple from

that source. This list is then simply populated with the cartesian product of all sources, and alias

access within the rest of the query can be implemented as tuple-element access.

5.3.2 Iteration

Once the source for the query has been established, the iterative clauses must be evaluated for

each element of the source, in order, as described in the following sections.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 141
© 2014-2017 Health Level Seven International. All rights reserved

5.3.2.1 Let Clause

The let clause, if present, allows a CQL author to introduce expression definitions scoped to the

query context. For each definition specified in the let clause, the result of the expression is

evaluated and made available within the query context such that subsequent clauses can access

the value. Note that an implementation may opt for lazy evaluation, saving the cost of evaluating

an expression that is never actually referenced.

5.3.2.2 With Clause

Each with clause present in the query acts as a filter to remove items from the result if they do

not satisfy the conditions of the with clause. Evaluation proceeds by introducing the related

source into the query context and evaluating the “such that” condition of the with clause for each

element of the introduced source. If no element of the introduced source satisfies the such that

condition, the current row of the query source is filtered out of the result.

Note that because this is a positive existence condition, the test can stop after the first positive

result. Only in the case of a negative result would all the elements of the introduced source need

to be processed.

5.3.2.3 Without Clause

Each without clause present in the query acts as a filter to remove items from the result if they

satisfy the conditions of the without clause. This is the opposite of the with clause. Evaluation

proceeds the same way as a with clause, except that an element from the query source will only

pass the filter if there a no rows from the introduced source that satisfy the conditions of the

without clause.

5.3.2.4 Where Clause

The where clause, if present simply determines whether each element should be included in the

result. If the condition evaluates to true, the element is included. Otherwise, the element is

excluded from the result.

5.3.2.5 Return Clause

The return clause, if present, defines the final shape of each element produced by the query, as

well as whether or not to eliminate duplicates from the result. If distinct is specified as part of the

return clause, any duplicates must not appear in the result set. The expression defined in the

return clause is evaluated and the result is added to the output. If neither all or distinct is

specified, distinct is the default behavior.

5.3.3 Sort

After the iterative clauses are executed for each element of the query source, the sort clause, if

present, specifies a sort order for the final output. This step simply involves sorting the output of

the iterative steps by the conditions defined in the sort clause. This may involve sorting by a

particular element of the result tuples, or it may simply involve sorting the resulting list by the

defined comparison for the data type (for example, if the result of the query is simply a list of

integers).

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 142
© 2014-2017 Health Level Seven International. All rights reserved

5.3.4 Implementing Query Evaluation

It is worth noting that the implementation of query evaluation can be simplified by decomposing

the query into a set of more primitive operations. For example, the following operations are

sufficient to evaluate any query of CQL:

• ForEach

• Times

• Filter

• Distinct

• Sort

The following sketch details an implementation plan for any query using these primitives:

1. For each query source beyond the first, use a Times operation to produce a result with a

tuple for each combination, named the same as the alias used to introduce the source in

the query.

2. If the let clause is present, use a ForEach operation to introduce a tuple element for each

defined expression.

3. For each with clause, use a Filter and express the with in terms of an Exists in the

condition of the Filter.

4. For each without clause, use a Filter and express the without in terms of a Not Exists in

the condition of the Filter.

5. If the return clause is specified, use a ForEach to produce the result of the return. If the

return clause specifies Distinct, also attach a Distinct operation to the result.

6. If the sort clause is specified, use a Sort operation to produce the final sorted output.

Using this sketch, the evaluation of a query can be performed by pipelining the query into a

series of more primitive operations that can be implemented more easily. This approach also

lends itself to translation and/or optimization if necessary.

5.4 Timing Calculations

This section discusses the precise semantics for the representation of date/time values within

CQL, as well as the calculation of date/time arithmetic. The discussion in this section assumes

fully-specified date/time values. The next section will discuss the implications of partially-

specified date/time values.

5.4.1 Definitions

This section provides precise definitions for the terms involved in dealing with date/time values.

These definitions are based on the ISO 8601:2004 standard for the representation of date/time

values.

Term Definition Notes

DateTime
interval

Part of the time axis bounded by two
DateTime values.

A DateTime interval comprises all
DateTime values between the two
boundary DateTimes and, unless

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 143
© 2014-2017 Health Level Seven International. All rights reserved

otherwise stated, the boundary
DateTime values themselves.

Duration Quantity attributed to a DateTime interval, the
value of which is equal to the difference
between the time points of the final instant
and the initial instants of the time interval.

In case of discontinuities in the time
scale, such as a leap second or the
change from winter time to summer
time and back, the computation of the
duration requires the subtraction or
addition of the change of duration of
the discontinuity.

Nominal
duration

Duration expressed in years, months, or
days.

The duration of a calendar year, a
calendar month, or a calendar day
depends on its position in the
calendar. Therefore, the exact
duration of a nominal duration can
only be evaluated if the duration of the
calendar years, calendar months, or
calendar days used is known.

Second Base unit of measurement of time in the SI
as defined by the International Committee of
Weights and Measures.

Millisecond Unit of time equal to 0.001 seconds.

Minute Unit of time equal to 60 seconds.

Hour Unit of time equal to 60 minutes.

Day Unit of time equal to 24 hours.

Calendar day Time interval starting at midnight and ending
at the next midnight, the latter being also the
starting instant of the next calendar day.

A calendar day is often also referred
to as a day.

The duration of a calendar day is 24
hours, except if modified by:

- The insertion or deletion of
leap seconds, by decision of
the International Earth
Rotation Service (IERS), or

- The insertion or deletion of
other time intervals, as may
be prescribed by local
authorities to alter the time
scale of local time.

Day Duration of a calendar day. The term “day” applies also to the
duration of any time interval which
starts at a certain time of day at a
certain calendar day and ends at the
same time of day at the next calendar
day.

Calendar
month

Time interval resulting from the division of a
calendar year into 12 time intervals, each
with a specific name and containing a
specific number of calendar days.

A calendar month is often referred to
as a month.

Month Duration of 28, 29, 30, or 31 calendar days,
depending on the start and/or the end of the

The term “month” applies also to the
duration of any time interval which
starts at a certain time of day at a

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 144
© 2014-2017 Health Level Seven International. All rights reserved

corresponding time interval within the specific
calendar month.

certain calendar day of the calendar
month and ends at the same time of
day at the same calendar day of the
next calendar month, if it exists. In
other cases, the ending calendar day
has to be agreed on.

Calendar
year

Cyclic time interval in a calendar which is
required for one revolution of the Earth
around the Sun and approximated to an
integral number of calendar days.

A calendar year is also referred to as
a year.

Unless otherwise specified, the term
designates a calendar year in the
Gregorian calendar.

Year Duration of 365 or 366 calendar days
depending on the start and/or the end of the
corresponding time interval within the specific
calendar year.

The term “year” applies also to the
duration of any time interval which
starts at a certain time of day at a
certain calendar date of the calendar
year and ends at the same time of day
at the same calendar date of the next
calendar year, if it exists. In other
cases, the ending calendar day has to
be agreed on.

Common
year

Calendar year in the Gregorian calendar that
has 365 calendar days.

Leap year Calendar year in the Gregorian calendar that
has 366 calendar days.

TABLE 5-G

ISO 8601 postulates that duration can be expressed by a combination of components with

accurate duration (hour, minute, and second) and components with nominal duration (year,

month, week, and day). The standard allows for the omission of lower-level components for

“reduced accuracy” applications. Following this guidance, CQL represents date/time values using

the following components:

Component Type Range Notes

Year Integer [0001, 9999] A CQL environment must be able to represent
the minimum year of 0001, and a maximum year
of 9999. Environments may represent dates in
years before or after these years, the range
specified here is the minimum required.

Month Integer [1, 12] Months are specified by their ordinal position
(i.e. January = 1, February = 2, etc.)

Day Integer [1, 31] If the day specified is not present in the month
(i.e. February 30th), the day value is reduced by
the number of days in the given month, and the
month is incremented by 1.

Hour Integer [0, 23]

Minute Integer [0, 59]

Second Integer [0, 59]

Millisecond Integer [0, 999] 999 milliseconds is the maximum required
precision. Note that many operations require the

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 145
© 2014-2017 Health Level Seven International. All rights reserved

ability to compute the “next” or “prior” instant,
and these semantics depend on the step-size of
1 millisecond, so systems that support more
than millisecond precision will need to quantize
to the millisecond to achieve these semantics.

Timezone
Offset

Real [-12.00, 14.00] The timezone offset is represented as a real with
two digits of precision to account for timezones
with partial hour differences. Note that the
timezone offset is a decimal representation of
the time offset, so an offset of +2:30 would be
represented as +2.50.

TABLE 5-H

5.4.2 Date/Time Arithmetic

CQL allows time durations, represented as Quantities, to be added to or subtracted from date/time

values. The result of these operations take the calendar into account when determining the correct

answer. In general, when the addition of a quantity exceeds the limit for that precision, it results

in a corresponding increase in the next higher precision. The following table describes these

operations for each precision:

Precision Type Range Semantics

Year Integer [0001, 9999] The year, positive or negative, is added to the
year component of the date/time value. If the
resulting year is out of range, an error is thrown.
If the month and day of the date/time value is
not a valid date in the resulting year, the last day
of the calendar month is used. For example,
DateTime(2012, 2, 29) + 1 year =
DateTime(2013, 2, 28). The resulting date/time
value will have the same time components.

Month Integer [1, 12] The month, positive or negative is divided by 12,
and the integer portion of the result is added to
the year component. The remaining portion of
months is added to the month component. If the
resulting date is not a valid date in the resulting
year, the last day of the resulting calendar
month is used. The resulting date/time value will
have the same time components.

Week Integer [1, 52] The week, positive or negative, is multiplied by
7, and the resulting value is added to the day
component, respecting calendar month and
calendar year lengths. The resulting date/time
value will have the same time components.

Day Integer [1, 31] The days, positive or negative, are added to the
day component, respecting calendar month and
calendar year lengths. The resulting date/time
value will have the same time components.

Hour Integer [0, 23] The hours, positive or negative, are added to the
hour component, with each 24 hour block

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 146
© 2014-2017 Health Level Seven International. All rights reserved

counting as a calendar day, and respecting
calendar month and calendar year lengths.

Minute Integer [0, 59] The minutes, positive or negative, are added to
the minute component, with each 60 minute
block counting as an hour, and respecting
calendar month and calendar year lengths.

Second Integer [0, 59] The seconds, positive or negative, are added to
the second component, with each 60 second
block counting as a minute, and respecting
calendar month and calendar year lengths.

Millisecond Integer [0, 999] The milliseconds, positive or negative, are
added to the millisecond component, with each
1000 millisecond block counting as a second,
and respecting calendar month and calendar
year lengths.

TABLE 5-I

5.5 Precision-Based Timing

One of the most complex aspects of quality expression logic is dealing with timing relationships

in the presence of partially-specified date/time values. This section discusses the precise

semantics used by CQL to help mitigate this complexity and allow measure and decision support

authors to express temporal logic intuitively and accurately, even in the presence of uncertain

date/time data.

The core issue being addressed is the proper handling of temporal comparisons in the presence of

varying degrees of certainty about the time at which events occur. For example, if a measure is

looking for the occurrence of a particular procedure within two years of the measurement start

date, but an EHR records that a qualifying procedure occurred in a given year, not the month or

day of the occurrence. In this scenario, the EHR must be allowed to provide as much information

as it accurately has, but must not be required to provide information that is not known. This

requirement means that the record will contain a date/time value, but specified only to the year

precision. If the semantics for timing comparison do not take this possibility into account, the

resulting comparisons may yield incorrect results.

In general, the approach taken by CQL formally defines the notion of uncertainty to specify the

semantics for date/time comparisons, and all the operations that rely on them. Note that the

concept of uncertainty is not exposed directly in CQL or in ELM, but is defined as an

implementation detail. This approach is deliberate and is taken to achieve the intuitively correct

semantics without exposing the complexity involved to CQL authors and developers.

The discussion here begins by formally defining uncertainty and the semantics of operations

involving uncertainty. The calculation of duration between imprecise dates is then discussed in

terms of uncertainty, and then the CQL timing phrases are all defined in terms of either date/time

comparison, or duration calculation. The discussion concludes with some notes on

implementation of these semantics within an engine or translated environment.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 147
© 2014-2017 Health Level Seven International. All rights reserved

5.5.1 Uncertainty

Formally, an uncertainty is a closed interval over a given point type, with specific semantics

defined for comparison operators. For simplicity, we use the point type Integer in the discussion

that follows.

Intuitively, an uncertainty between X and Y means some value between X and Y. For example:

uncertainty[1, 10]

This uncertainty means some value between 1 and 10. Note that this representation of uncertainty

assumes a continuous probability distribution along the range. In other words, the assumption is

that there is no information about how likely the value is to be any particular value within the

range.

Note that the special case of an uncertainty of width zero:

uncertainty[1, 1]

Must be treated as equivalent to the point value, 1 in this case.

5.5.1.1 Comparison Operators

Comparison semantics for uncertainty are defined to result in the intuitively expected behavior.

For example, when comparing two uncertainties for equality:

uncertainty[1, 10] = uncertainty[1, 10]

The above expression results in null, because the meaning of the statement is actually:

Is some value between 1 and 10 equal to some value between 1 and 10?

And the intuitively correct answer to that question is, I don’t know. However, for cases where

there is no overlap between the uncertainties, the result is false:

uncertainty[1, 10] = uncertainty[21, 30]

Again, the intended semantics of this statement are:

Is some value between 1 and 10 equal to some value between 21 and 30?

And the correct answer is, No, because there is no possible value in either uncertainty range that

could evaluate to true.

In the special case of equality comparisons of two uncertainties of width zero, the result is true:

uncertainty[2, 2] = uncertainty[2, 2]

This expression can be read:

Is some value between 2 and 2 equal to some value between 2 and 2?

And the correct answer is, Yes.

More precisely, given an uncertainty A with range Alow to Ahigh, and uncertainty B with range Blow

to Bhigh, the comparison:

A = B

Is equivalent to:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 148
© 2014-2017 Health Level Seven International. All rights reserved

if Alow <= Bhigh and Ahigh >= Blow
 then if Alow = Ahigh and Blow = Bhigh
 then true
 else null
 else false

For relative comparisons, again, the semantics are defined to give the intuitively correct answer

given the intended meaning of uncertainty. For example:

uncertainty[30, 40] < uncertainty[50, 60]

This expression can be read:

Is some value between 30 and 40 less than some value between 50 and 60?

And the correct answer is, Yes. If the ranges overlap:

uncertainty[30, 40] < uncertainty[35, 45]

Then the result is null, with one exception having to do with boundaries. Consider the following:

uncertainty[30, 40] < uncertainty[20, 30]

This expression can be read:

Is some value between 30 and 40 less than some value between 20 and 30?

And the correct answer is, No, because even though the ranges overlap (by width one at the lower

boundary of the left-hand value), the result would still be false because 30 is not less than 30.

More precisely, given an uncertainty A with range Alow to Ahigh, and uncertainty B with range Blow

to Bhigh, the comparison:

A < B

Is equivalent to:

case
 when Ahigh < Blow then true
 when Alow >= Bhigh then false
 else null
end

And finally, for relative comparisons involving equality, consider the following:

uncertainty[30, 40] <= uncertainty[40, 50]

This expression can be read:

Is some value between 30 and 40 less than or equal to some value between 40 and 50?

And the correct answer is, Yes, because every possible value between 30 and 40 inclusive is

either less than or equal to every possible value between 40 and 50 inclusive.

More precisely, given an uncertainty A with range Alow to Ahigh, and uncertainty B with range Blow

to Bhigh, the comparison:

A <= B

Is equivalent to:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 149
© 2014-2017 Health Level Seven International. All rights reserved

case
 when Ahigh <= Blow then true
 when Alow > Bhigh then false
 else null
end

Note carefully that these semantics introduce some asymmetries into the comparison operators.

In particular, A = B or A < B is not equivalent to A <= B because of the uncertainty.

5.5.1.2 Arithmetic Operators

In addition to comparison operators, the basic arithmetic operators are defined for uncertainty,

again based on the intuitively expected semantics. For example:

uncertainty[17, 44] + uncertainty[5, 10] // returns uncertainty[22, 54]

The above expression can be read:

some value between 17 and 44 + some value between 5 and 10

The result of this calculation simply adds the respective boundaries to determine what the range

of possible values of this calculation would be, in this case some value between 22 and 54.

Similarly for multiplication:

uncertainty[17, 44] * uncertainty[2, 4] // returns uncertainty[34, 176]

The result of this calculation multiplies the boundaries of the uncertainties to determine the range

of possible values for the result, in this case some value between 34 and 176.

5.5.1.3 Implicit Conversion

An important step to achieving the intended semantics for precision-based timing comparisons in

CQL is to allow for implicit conversion between uncertainties and point-values. This means that

anywhere an uncertainty is involved in an operation with a point-value, the point-value will be

implicitly converted to an uncertainty of width zero and the uncertainty semantics defined above

are then used to perform the calculation. For example:

uncertainty[17, 44] > 2

The point-value of 2 in this example is implicitly converted to an uncertainty of width zero:

uncertainty[17, 44] > uncertainty[2, 2]

This implicit conversion means that in general, the notion of uncertainty will not be visible in the

resulting syntax of CQL. For example:

days between DateTime(2014, 1, 15) and DateTime(2014, 2) > 2

Even though determining the correct answer to this question involves the use of uncertainty, it is

implicit in the way the operations are defined, and does not surface to the CQL authors.

5.5.2 Determining Difference and Duration

To determine the duration between two date/time values, CQL supports a between operator for

each date/time component. For example:

days between A and B

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 150
© 2014-2017 Health Level Seven International. All rights reserved

This expression returns the number of whole days between A and B. If A is before B, the result

will be a positive integer. If A is after B, the result will be a negative integer. And if A is the same

day as B, the result will be zero.

However, to support the case where one or the other comparand in the duration operation does

not specify components to the level of precision being determined, the between operator does not

return a strict integer, it returns an uncertainty, which is defined as a range of values, similar to

an interval. For example:

days between DateTime(2014, 1, 15) and DateTime(2014, 2)

The number of days between these two dates cannot be determined reliably, but a definite range

of possible values can be determined. The lower bound of that range is found by determining the

duration between the maximum possible value of the first comparand and the minimum possible

value of the second comparand; and the upper bound is determined using the minimum possible

value of the first comparand and the maximum possible value of the second:

days between DateTime(2014, 1, 15) and DateTime(2014, 2, 1) // 17 days
days between DateTime(2014, 1, 15) and DateTime(2014, 2, 28) // 44 days

Intuitively, what this means is that the number of days between January 15th, 2014 and some date

in February, 2014, is no less than 17 days, but no more than 44. By incorporating this information

into an uncertainty, CQL can support the intuitively expected semantics when performing timing

comparisons. For example:

days between DateTime(2014, 1, 15) and DateTime(2014, 2) > 2

This comparison returns true, because the lower bound of the uncertainty, 17, is greater than 2, so

no matter what the actual date of the second comparand, it would always be at least 17 days. By

contrast:

days between DateTime(2014, 1, 15) and DateTime(2014, 2) > 50

This comparison returns false, because the upper bound of the uncertainty, 44, is less than 50, so

no matter what the actual date of the second comparand, it would always be at most 44 days. And

finally:

days between DateTime(2014, 1, 15) and DateTime(2014, 2) > 20

This comparison returns unknown (null), because the value being compared, 20, falls within the

uncertainty, so no determination can be reliably made.

CQL also supports a difference in operator which, rather than calculating the number of calendar

periods between two dates, calculates the number of boundaries crossed between the two dates.

As with the duration operator, difference is defined to take imprecision in date/time values into

account by returning an uncertainty.

5.5.3 Timing Phrases

Using the foundational elements described in the previous sections, the semantics for the various

CQL timing phrases can now be described in detail. The general approach for each timing phrase

is to transform it to an equivalent representation in terms of either a direct comparison, or a

comparison involving a duration calculation.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 151
© 2014-2017 Health Level Seven International. All rights reserved

5.5.3.1 Same As

The same as timing phrase is simply defined to be equivalent to a same as comparison of the

date/time values involved:

A starts same day as start B

This expression is equivalent to:

start of A same day as start of B

Similarly for the or after and or before comparisons:

A starts same day or after start B
A starts same day or before start B

These expressions are equivalent to:

start of A same day or after start of B
start of A same day or before start of B

5.5.3.2 Before/After

The basic before and after timing phrases are defined to be equivalent to a before or after

comparison of the date/time values involved:

A starts before start B
A starts after start B

These expressions are equivalent to:

start of A before start of B
start of A after start of B

If the phrase involves a duration offset, the duration offset is applied as a date/time arithmetic

calculation:

A starts 3 days before start B
A starts 3 days after start B

These expressions are equivalent to:

start of A same as start of B – 3 days
start of A same as start of B + 3 days

For timing phrases involving relative comparison, the prefixes less than and more than, as well as

the suffixes or more and or less can be used:

A starts 3 days or more before start B
A starts more than 3 days before start B
A starts 3 days or less after start B
A starts less than 3 days after start B

These expressions are equivalent to:

start of A same or before start of B - 3 days
start of A before start of B - 3 days
start of A in (start of B, start of B + 3 days]
start of A in (start of B, start of B + 3 days)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 152
© 2014-2017 Health Level Seven International. All rights reserved

5.5.3.3 Within

The within timing phrase is defined in terms of an interval membership test:

A starts within 3 days of start B

This expression is equivalent to:

start of A in [start of B - 3 days, start of B + 3 days]

5.5.3.4 Interval Operators

In general, interval comparisons are already defined in terms of the fundamental comparison

operators (=, >, <, >=, <=, and the precision-based counterparts) so the semantics of the interval

comparisons follow directly from these extended semantics.

5.5.4 Implementing Precision-Based Timing with Uncertainty

Implementation of these semantics can be simplified by recognizing that all the date/time

comparisons can be expressed in terms of a difference calculation and a comparison of the

resulting (potentially uncertain) values against 0. Combined with the timing phrase translations,

this means that the implementation for precision-based timing can be isolated to:

• Support for run-time operations on integer-based uncertainties, including:

o =, <, >, <=, >=, +, -, unary +/-, *, /

o implicit conversion between integer point values and uncertainties

• Precision-based duration and difference between date/times

All the other operations and semantics can be achieved using only these primitives. For example,

given A and B, both date/time values, the comparison:

A > B

Can be evaluated as:

difference in milliseconds between A and B > 0

Similarly:

A same day as B

Can be evaluated as:

difference in days between A and B = 0

Because the difference operation will return an uncertainty when imprecise date/time values are

involved, the correct semantics will be applied to the comparison to the point value, 0 in this

case. By structuring the evaluation engine such that all operations involving date/times are

performed in terms of these primitives, correct semantics can be achieved with a comparatively

straightforward implementation.

Note also that a compile-time implicit conversion to uncertainty may also simplify the

implementation, avoiding the need for integer-valued primitives to determine at run-time whether

they are operating on an uncertainty.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 153
© 2014-2017 Health Level Seven International. All rights reserved

6 TRANSLATION SEMANTICS

As discussed in the introductory section, this specification covers three levels of definition, the

Conceptual or Author level, the Logical level, and the Physical level. The Conceptual level is

concerned with the representation of logic in a format suitable for authoring and consumption by

clinical experts; the Physical level is concerned with the representation of logic in a format

suitable for processing and transferring by machines; and the Logical level is concerned with

providing a mapping between the Conceptual and Physical levels in a way that preserves the

semantics of the logic represented while also enabling integration and execution functionality.

To achieve these goals, the Logical level establishes a semantically complete bi-directional

mapping between the Conceptual and Physical levels. This chapter describes this mapping in

more detail, and sketches a process for translation from the Conceptual to the Logical, and from

the Logical to the Conceptual. The Physical level is an isomorphic concrete realization of the

Logical level; translation between the Logical and Physical levels is therefore a matter of

serialization and realization of the data model, and is covered in detail in the Physical

Representation chapter.

6.1 CQL-to-ELM

Every statement of CQL has a semantically equivalent representation in ELM. As such, it is

possible to programmatically translate any statement of CQL into its equivalent ELM

representation. The following sections define the mappings between the language elements of

CQL and their equivalent ELM representations, as well as providing a sketch for how these

mappings could be used to translate from CQL to ELM.

6.1.1 Declarations

In both CQL and ELM, the basic container for all declarations is the Library. In CQL, a library

corresponds to a single source document, usually represented as a text file. In ELM, a library is

represented as a single instance of the Library class which contains all the declarations for the

library.

The identifier and version of the library are set as part of the library metadata.

The following table specifies the ELM equivalent for each CQL declaration:

CQL Declaration ELM Equivalent

library Library

using UsingDef

include IncludeDef

codesystem CodeSystemDef

valueset ValueSetDef

parameter ParameterDef

define ExpressionDef

function FunctionDef

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 154
© 2014-2017 Health Level Seven International. All rights reserved

TABLE 6-A

6.1.2 Types

To represent types, CQL uses the type-specifier construct. In ELM, an equivalent TypeSpecifier

abstract class is defined, with appropriate subclasses to represent the various types of specifiers,

as detailed in the following table:

CQL Specifier ELM Equivalent

named-type-specifier NamedTypeSpecifier

interval-type-specifier IntervalTypeSpecifier

list-type-specifier ListTypeSpecifier

tuple-type-specifier TupleTypeSpecifier

choice-type-specifier ChoiceTypeSpecifier

TABLE 6-B

Note that for named type specifiers, the name of the type is a qualified identifier, with the

qualifier representing the name of the data model that defines the type. For example, the system-

defined integer type in CQL is named System.Integer, with System as the name of the data

model, and Integer as the name of the type.

6.1.3 Literals and Selectors

The following table defines the mapping between the various CQL literals and their equivalent

representation in ELM:

CQL Literal ELM Equivalent

null Null

boolean-literal Boolean

integer-literal Literal (valueType="Integer")

decimal-literal Literal (valueType="Decimal")

quantity-literal Quantity

string-literal Literal (valueType="String")

date-time-literal DateTime

time-literal Time

interval-selector Interval

list-selector List

tuple-selector Tuple

instance-selector Instance

TABLE 6-C

6.1.4 Functions

Most of the functions and operations available in CQL have a direct counterpart in ELM. For

ease of reference, the operations and functions are grouped the same way they are in the CQL

Reference.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 155
© 2014-2017 Health Level Seven International. All rights reserved

6.1.4.1 Logical Operators

CQL Operator ELM Equivalent

and And

not Not

or Or

xor Xor

implies Implies

TABLE 6-D

6.1.4.2 Type Operators

CQL Operator ELM Equivalent

as As

convert Convert

is Is

Children Children

Descendents Descendents

TABLE 6-E

Note that for supported conversions, a more efficient implementation would be to emit a specific

operator to perform the conversion, rather than a generic Convert as specified here. For example,

consider the following CQL conversion expression:

convert B to String

Rather than emitting a Convert, an implementation could emit a ToString which took an integer

parameter. This would prevent the run-time type check required for implementation of a general

purpose Convert operator.

Note also that when translating to ELM, an implementation could emit all implicit conversions

directly, avoiding the need for an ELM translator or execution engine to deal with implicit

conversion.

6.1.4.3 Nullological Operators

CQL Operator ELM Equivalent

Coalesce Coalesce

is null IsNull

is false IsFalse

is true IsTrue

TABLE 6-F

6.1.4.4 Comparison Operators

CQL Operator ELM Equivalent

between And of comparisons (for point types) or IncludedIn (for Interval types)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 156
© 2014-2017 Health Level Seven International. All rights reserved

CQL Operator ELM Equivalent

= Equal

> Greater

>= GreaterOrEqual

< Less

<= LessOrEqual

~ Equivalent

!= NotEqual

!~ Not of Equivalent

TABLE 6-G

6.1.4.5 Arithmetic Operators

CQL Operator ELM Equivalent

Abs Abs

+ Add

Ceiling Ceiling

/ Divide

Floor Floor

Exp Exp

Log Log

Ln Ln

maximum MaxValue

minimum MinValue

mod Modulo

* Multiply

- (unary minus) Negate

predecessor Predecessor

^ Power

Round Round

- Subtract

successor Successor

Truncate Truncate

div TruncatedDivide

TABLE 6-H

6.1.4.6 String Operators

CQL Operator ELM Equivalent

Combine Combine

+, & Concatenate (when & is used, a Coalesce(X, ‘’) is applied to each operand

EndsWith EndsWith

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 157
© 2014-2017 Health Level Seven International. All rights reserved

CQL Operator ELM Equivalent

[] Indexer

LastPositionOf LastPositionOf

Length Length

Lower Lower

Matches Matches

PositionOf PositionOf

ReplaceMatches ReplaceMatches

Split Split

StartsWith StartsWith

Substring Substring

Upper Upper

TABLE 6-I

6.1.4.7 Date/Time Operators

CQL Operator ELM Equivalent

+ Add

after After

before Before

DateTime DateTime

component from DateTimeComponentFrom

difference..between DifferenceBetween

duration..between DurationBetween

Now Now

same as SameAs

same or after SameOrAfter

same or before SameOrBefore

- Subtract

Time Time

TimeOfDay TimeOfDay

Today Today

TABLE 6-J

6.1.4.8 Interval Operators

CQL Operator ELM Equivalent

after After

before Before

collapse Collapse

contains Contains

end of End

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 158
© 2014-2017 Health Level Seven International. All rights reserved

CQL Operator ELM Equivalent

ends Ends

= Equal

except Except

in In

includes Includes

during IncludedIn

included in IncludedIn

intersect Intersect

~ Equivalent

meets Meets

meets after MeetsAfter

meets before MeetsBefore

!= NotEqual

!~ Not of Equivalent

overlaps Overlaps

on or after SameOrAfter

on or before SameOrBefore

overlaps after OverlapsAfter

overlaps before OverlapsBefore

point from PointFrom

properly includes ProperlyIncludes

properly included in ProperlyIncludedIn

properly during ProperlyIncludedIn

start of Start

starts Starts

union Union

width of Width

TABLE 6-K

6.1.4.9 List Operators

CQL Operator ELM Equivalent

contains Contains

distinct Distinct

= Equal

except Except

exists Exists

flatten Flatten

First First

in In

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 159
© 2014-2017 Health Level Seven International. All rights reserved

CQL Operator ELM Equivalent

includes Includes

included in IncludedIn

[] Indexer

IndexOf IndexOf

intersect Intersect

Last Last

Length Length

~ Equivalent

!= NotEqual

!~ Not of Equivalent

properly includes ProperlyIncludes

properly included in ProperlyIncludedIn

singleton from SingletonFrom

Skip(n) Slice(n, null)

Tail Slice(1, null)

Take(n) Slice(0, n)

union Union

TABLE 6-L

6.1.4.10 Aggregate Operators

CQL Operator ELM Equivalent

AllTrue AllTrue

AnyTrue AnyTrue

Avg Avg

Count Count

Max Max

Min Min

Median Median

Mode Mode

PopulationStdDev PopulationStdDev

PopulationVariance PopulationVariance

StdDev StdDev

Sum Sum

Variance Variance

TABLE 6-M

6.1.4.11 Clinical Operators

CQL Operator ELM Equivalent

AgeIn-precision CalculateAge (with patient birthdate reference supplied)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 160
© 2014-2017 Health Level Seven International. All rights reserved

CQL Operator ELM Equivalent

AgeIn-precision-At CalculateAgeAt (with patient birthdate reference supplied)

CalculateAgeIn-precision CalculateAge

CalculateAgeIn-precision-At CalculateAgeAt

= Equal

~ Equivalent

in (Codesystem) InCodeSystem

in (Valueset) InValueSet

TABLE 6-N

6.1.5 Phrases

In general, the various phrases of CQL do not have a direct representation in ELM, but rather

result in operator and function invocations which then do have representations. For more

information, see the Timing Phrases section.

6.1.6 Queries

The CQL query construct has a direct representation in ELM, as shown by the following table:

CQL Construct ELM Equivalent

query Query

aliased-query-source AliasedQuerySource

let-clause LetClause

with-clause With

without-clause Without

where-clause Query (where element)

return-clause ReturnClause

sort-clause SortClause

TABLE 6-O

Althought these elements can be used to directly represent the query construct of CQL, it is also

possible to represent queries using a series of equivalent operations that simplify implementation.

ELM defines simplified operations specifically for this purpose. See the Implementing Query

Evaluation section for more information on how to transform any given CQL query into an

equivalent representation using these operators.

6.2 ELM-to-CQL

In addition to being able to translate CQL to ELM, any given expression of ELM can be

represented in CQL. Support for this direction of translation would be useful for applications that

produce ELM from another source, and need to display a human-readable representation of the

logic.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 161
© 2014-2017 Health Level Seven International. All rights reserved

This bi-directionality means that a given expression of CQL could be translated to ELM, and then

back again. However, because ELM is typically a more primitive representation, this process is

not necessarily a “round-trip”. For example, consider the following CQL:

A starts within 3 days of start B

This will actually result in the following ELM output:

<expression xsi:type="In">
 <operand xsi:type="DurationBetween" precision="Day">
 <operand xsi:type="Start">
 <operand xsi:type="ExpressionRef" name="A"/>
 </operand>
 <operand xsi:type="Start">
 <operand xsi:type="ExpressionRef" name="B"/>
 </operand>
 </operand>
 <operand xsi:type="Interval">
 <low xsi:type="Literal" valueType="xs:int" value="-3"/>
 <high xsi:type="Literal" valueType="xs:int" value="3"/>
 </operand>
</expression>

The above expression, rendered directly back to CQL would be:

days between start of A and start of B in [-3, 3]

These expressions are semantically equivalent, but not syntactically the same, as the first is

targeted at understandability, while the second is targeted at implementation. To preserve “round-

trip” capability, an implementation could emit annotations with the ELM using the extension

mechanism of the base Element class to provide the original source CQL.

In general, the mapping from ELM to CQL is simply the opposite of the mapping described in

the previous section. However, there are several special-purpose operators that are only defined

in ELM which are used to simplify query implementation. For completeness, the mappings from

those operators to CQL are described here to ensure that any given ELM document could be

translated to CQL.

The examples in the following section will make use of the following expression definitions:

<def name="List1">
 <expression xsi:type="List">
 <element xsi:type="Tuple">
 <element name="X">
 <value xsi:type="Literal" valueType="xs:int" value="1"/>
 </element>
 </element>
 <element xsi:type="Tuple">
 <element name="X">
 <value xsi:type="Literal" valueType="xs:int" value="2"/>
 </element>
 </element>
 <element xsi:type="Tuple">
 <element name="X">
 <value xsi:type="Literal" valueType="xs:int" value="3"/>
 </element>

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 162
© 2014-2017 Health Level Seven International. All rights reserved

 </element>
 </expression>
</def>
<def name="List2">
 <expression xsi:type="List">
 <element xsi:type="Tuple">
 <element name="Y">
 <value xsi:type="Literal" valueType="xs:int" value="1"/>
 </element>
 </element>
 <element xsi:type="Tuple">
 <element name="Y">
 <value xsi:type="Literal" valueType="xs:int" value="2"/>
 </element>
 </element>
 <element xsi:type="Tuple">
 <element name="Y">
 <value xsi:type="Literal" valueType="xs:int" value="3"/>
 </element>
 </element>
 </expression>
</def>

6.2.1 ForEach

The ForEach operator in ELM takes an argument of type list and returns a list with an element

for each source element that is the result of evaluating the element expression. For example:

<expression xsi:type="ForEach">
 <source xsi:type="ExpressionRef" name="List1"/>
 <element xsi:type="Property" path="X"/>
</expression>

This expression returns the list of integers from the List1 expression. Although there is no direct

counterpart in CQL, this expression can be represented using the query construct. The source for

the ForEach is used as the primary query source, and the element expression is represented using

the return-clause:

List1 A return A.X

6.2.2 Times

The Times operator in ELM computes the Cartesian-product of two lists. Again, although there is

no direct counterpart in CQL, the query construct can be used to produce an equivalent result:

<expression xsi:type="Times">
 <source xsi:type="ExpressionRef" name="List1"/>
 <source xsi:type="ExpressionRef" name="List2"/>
</expression>

Assuming List1 and List2 are defined as specified above, the equivalent CQL is a multi-source

query with a source for each operand in the Times, and a return clause that builds the resulting

tuples:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 163
© 2014-2017 Health Level Seven International. All rights reserved

from List1 A, List2 B
 return { X: A.X, Y: B.Y }

6.2.3 Filter

The Filter operator in ELM filters the contents of a list, returning only those elements that satisfy

the expression defined in the condition element. For example:

<expression xsi:type="Filter">
 <source xsi:type="ExpressionRef" name="List1"/>
 <condition xsi:type="Equal">
 <operand xsi:type="Property" path="X">
 <operand xsi:type="Literal" valueType="xs:int" value="1"/>
 </condition>
</expression>

Again, although no direct counterpart in CQL exists, the where clause of the query construct

provides the equivalent functionality:

List1 A where A.X = 1

6.2.4 Sort

The Sort operator in ELM sorts the contents of a list. For example:

<expression xsi:type="Sort">
 <source xsi:type="ExpressionRef" name="List1"/>
 <by xsi:type="ByColumn" path="X" direction="desc"/>
</expression>

Again, the CQL query construct provides the equivalent functionality:

List1 A sort by A.X desc

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 164
© 2014-2017 Health Level Seven International. All rights reserved

7 PHYSICAL REPRESENTATION

The physical representation for CQL is specifically concerned with communicating the logic

involved in any given artifact. As discussed in the previous sections, the unit of distribution for

CQL is the library, which corresponds to a single file of CQL at the author level, or a single ELM

document at the physical level.

7.1 Schemata

The physical representation is simply a set of XML schemata which define XML types for each

class defined in the ELM UML model. A CQL physical library is then an ELM document with a

single Library element as the root.

The physical representation for ELM is defined by the following schemata:

Schema Description

expression.xsd Defines expression logic components without reference to clinically relevant
constructs

clinicalexpression.xsd Introduces expression components that contain clinically-relevant constructs

library.xsd Defines the overall library container for ELM

TABLE 7-A

As with the logical portion of the specification, this documentation is intended to provide an

overview only, the schemata are the actual specification and should be considered the source of

truth.

7.1.1 Media Types and Namespaces

The schema for ELM is described for XML using the above XSDs. To support multiple

serialization formats, the following media types and namespaces are defined:

Content Type Description

text/cql The content is a text document containing CQL

application/elm+xml The content is an ELM document, rendered as XML

application/elm+json The content is an ELM document, rendered as JSON

Namespace Description

urn:hl7-org:elm:r1 The URI for ELM

urn:hl7-org:cql:r1 The URI for CQL

When serializing an ELM document using JSON, each XML element is serialized as a JSON

object, according to the following rules:

1. XML elements and attributes are serialized as JSON attributes of the same name.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 165
© 2014-2017 Health Level Seven International. All rights reserved

2. When necessary to distinguish the type of an object, an extra “type” attribute is added to

the JSON representation which contains the name of the ELM class represented by the

JSON data.

3. XML namespaces are serialized using curly braces. E.g. "t:Integer" in XML becomes

"{urn:hl7-org:elm-types:r1}Integer" in JSON.

4. Mixed content serialization is not supported, ELM XML documents should not contain

mixed content.

7.2 Library References

The implementation environment must provide a mechanism for library references to be resolved

based on their names and versions.

7.3 Data Model References

In addition, the implementation environment must provide a mechanism for data model

references to be resolved. At a minimum, the data model definition must define the structure of

all the types available within the data model, generally by providing an XSD or similar class

structure definition. If the implementation environment is only concerned with translation or

execution of ELM documents, then the type structures for each data model are sufficient.

However, to fully enable the authoring features of CQL syntax, the data model reference must

also define the following:

Component Description

URL The XML namespace associated with the model. This namespace is used by
the CQL-to-ELM translator to establish the URL used to reference types from
the model schema within an ELM document.

Schema Location The physical location of the model xsd relative to the ELM document. This
information can be provided, but is not required.

Target Qualifier If specified, determines the namespace qualifier that should be used when
referencing types of the data model within the ELM document.

Patient Type The name of the type that is used to represent patient information within the
model.

Patient Birth Date The name of the birth date property on the patient type. This information is
used by the CQL-to-ELM translator to render references to patient-age-
related functions (AgeInYears, AgeInYearsAt, etc.) into the non-patient-aware
age-related functions in ELM (CalculateAgeInYears, CalculateAgeInYearsAt,
etc.). This information is not required, but if it is not present, references to
patient-age-related functions will be passed directly through to ELM as
FunctionRefs.

TABLE 7-B

For each type available in the data model, the following information should be provided:

Component Description

Name The name of the type within the data model. This corresponds to the name of
the class within the class model, or the name of the type in the case of an

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 166
© 2014-2017 Health Level Seven International. All rights reserved

Component Description

xsd. In FHIR, for example, this corresponds to the name of the underlying
resource.

Identifier A unique identifier for the class that may be independent of the name. In
FHIR, for example, this corresponds to the profile identifier.

Label This information specifies the name of the type as it is referenced from CQL.
Note that this need not be a language-valid identifier, as CQL allows quoted-
identifiers to be used. However, the label must be unique. In the simplest
case, the label corresponds directly with the class name. Whether or not a
label is provided, a class can still be referenced from CQL by its name.

Primary Code Filter If the type has the notion of a primary code filter (e.g., Encounter), the name
of the attribute that is to be used if no code filter attribute is named within a
retrieve

Retrievable A boolean flag indicating whether the class can be referenced as a topic in a
retrieve. If this flag is not set, values of this class cannot be retrieved directly,
but may still be accessible as elements of other class values.

TABLE 7-C

The information defined here is formally described in the modelinfo.xsd document included in

the specification. The QUICK module in the CQL-to-ELM translator contains an instance of this

schema, quick-modelinfo.xml, which defines this metadata for the QUICK model.

Note that the actual model info definition and associated artifacts are part of the reference

implementation for CQL and not a normative aspect of the CQL specification. CQL only

specifies the expected behavior at the conceptual level. How that behavior is achieved with

respect to any particular data model is an implementation aspect and not prescribed by this

specification.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 167
© 2014-2017 Health Level Seven International. All rights reserved

8 APPENDIX A – CQL SYNTAX FORMAL SPECIFICATION

The formal specification for the CQL syntax is defined using the ANTLR4 grammar framework.

This framework is a general purpose cross-platform technology for describing computer

languages. For more information on this framework, refer to the ANTLR website

http://www.antlr.org/.

The material in this section is necessarily technical and assumes familiarity with language

definition in general, and ANTLR4 grammars in particular. In addition, the g4 presented here is

somewhat simplified for ease of reference and is provided for informative use only. For the

complete, normative g4 definition, refer to the CQL.g4 file included with the specification

package.

8.1 Declarations

The CQL grammar is defined in a single ANTLR4 grammar file, CQL.g4. The root production

rule is library, which specifies the overall structure for a library file:

library
 :
 libraryDefinition?
 usingDefinition*
 includeDefinition*
 codesystemDefinition*
 valuesetDefinition*
 codeDefinition*
 conceptDefinition*
 parameterDefinition*
 statement*
 ;

Other than statement, these production rules define the declarations available for a library.

libraryDefinition
 : 'library' identifier ('version' versionSpecifier)?
 ;

usingDefinition
 : 'using' modelIdentifier ('version' versionSpecifier)?
 ;

includeDefinition
 : 'include' identifier ('version' versionSpecifier)? ('called' localIdentifier)?
 ;

localIdentifier
 : identifier
 ;

accessModifier
 : 'public'
 | 'private'
 ;

http://www.antlr.org/

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 168
© 2014-2017 Health Level Seven International. All rights reserved

parameterDefinition
 : accessModifier? 'parameter' identifier typeSpecifier? ('default' expression)?
 ;

codesystemDefinition
 : accessModifier? 'codesystem' identifier ':' codesystemId
 ('version' versionSpecifier)?
 ;

valuesetDefinition
 : accessModifier? 'valueset' identifier ':' valuesetId
 ('version' versionSpecifier)? codesystems?
 ;

codesystems
 : 'codesystems' '{' codesystemIdentifier (',' codesystemIdentifier)* '}'
 ;

codesystemIdentifier
 : (libraryIdentifier '.')? identifier
 ;

libraryIdentifier
 : identifier
 ;

codeDefinition
 : accessModifier? 'code' identifier ':' codeId
 'from' codesystemIdentifier displayClause?
 ;

conceptDefinition
 : accessModifier? 'concept' identifier ':' '{' codeIdentifier
 (',' codeIdentifier)* '}' displayClause?
 ;

codeIdentifier
 : (libraryIdentifier '.')? identifier
 ;

codesystemId
 : STRING
 ;

valuesetId
 : STRING
 ;

versionSpecifier
 : STRING
 ;

codeId
 : STRING
 ;

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 169
© 2014-2017 Health Level Seven International. All rights reserved

8.2 Type Specifiers

The typeSpecifier production rule defines all type specifiers available in the language.

typeSpecifier
 : namedTypeSpecifier
 | listTypeSpecifier
 | intervalTypeSpecifier
 | tupleTypeSpecifier
 | choiceTypeSpecifier
 ;

namedTypeSpecifier
 : (modelIdentifier '.')? identifier
 ;

modelIdentifier
 : identifier
 ;

listTypeSpecifier
 : 'List' '<' typeSpecifier '>'
 ;

intervalTypeSpecifier
 : 'Interval' '<' typeSpecifier '>'
 ;

tupleTypeSpecifier
 : 'Tuple' '{' tupleElementDefinition (',' tupleElementDefinition)* '}'
 ;

tupleElementDefinition
 : identifier typeSpecifier
 ;

choiceTypeSpecifier
 : 'Choice' '<' typeSpecifier (',' typeSpecifier)* '>'
 ;

8.3 Statements

The main body of the library then consists of any number of statements, defined by the statement

production rule:

statement
 : expressionDefinition
 | contextDefinition
 | functionDefinition
 ;

expressionDefinition
 : 'define' accessModifier? identifier ':' expression
 ;

contextDefinition

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 170
© 2014-2017 Health Level Seven International. All rights reserved

 : 'context' identifier
 ;

functionDefinition
 : 'define' accessModifier? 'function' identifier
 '(' (operandDefinition (',' operandDefinition)*)? ')'
 ('returns' typeSpecifier)?
 ':' (functionBody | 'external')
 ;

operandDefinition
 : identifier typeSpecifier
 ;

functionBody
 : expression
 ;

8.4 Queries

The query production rule defines the syntax for queries within CQL:

querySource
 : retrieve
 | qualifiedIdentifier
 | '(' expression ')'
 ;

aliasedQuerySource
 : querySource alias
 ;

alias
 : identifier
 ;

queryInclusionClause
 : withClause
 | withoutClause
 ;

withClause
 : 'with' aliasedQuerySource 'such that' expression
 ;

withoutClause
 : 'without' aliasedQuerySource 'such that' expression
 ;

retrieve
 : '[' namedTypeSpecifier (':' (codePath 'in')? terminology)? ']'
 ;

codePath
 : identifier
 ;

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 171
© 2014-2017 Health Level Seven International. All rights reserved

terminology
 : qualifiedIdentifier
 | expression
 ;

qualifier
 : identifier
 ;

query
 : sourceClause
 letClause?
 queryInclusionClause*
 whereClause?
 returnClause?
 sortClause?
 ;

sourceClause
 : singleSourceClause
 | multipleSourceClause
 ;

singleSourceClause
 : aliasedQuerySource
 ;

multipleSourceClause
 : 'from' aliasedQuerySource (',' aliasedQuerySource)*
 ;

letClause
 : 'let' letClauseItem (',' letClauseItem)*
 ;

letClauseItem
 : identifier ':' expression
 ;

whereClause
 : 'where' expression
 ;

returnClause
 : 'return' ('all' | 'distinct')? expression
 ;

sortClause
 : 'sort' (sortDirection | ('by' sortByItem (',' sortByItem)*))
 ;

sortDirection
 : 'asc' | 'ascending'
 | 'desc' | 'descending'
 ;

sortByItem

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 172
© 2014-2017 Health Level Seven International. All rights reserved

 : expressionTerm sortDirection?
 ;

qualifiedIdentifier
 : (qualifier '.')* identifier
 ;

8.5 Expressions

The expression production rule defines the syntax for all expressions within CQL:

expression
 : expressionTerm
 | retrieve
 | query
 | expression 'is' 'not'? ('null' | 'true' | 'false')
 | expression ('is' | 'as') typeSpecifier
 | 'cast' expression 'as' typeSpecifier
 | 'not' expression
 | 'exists' expression
 | expression 'properly'? 'between' expressionTerm 'and' expressionTerm
 | pluralDateTimePrecision 'between' expressionTerm 'and' expressionTerm
 | 'difference' 'in'
 pluralDateTimePrecision 'between' expressionTerm 'and' expressionTerm
 | expression ('<=' | '<' | '>' | '>=') expression
 | expression intervalOperatorPhrase expression
 | expression ('=' | '!=' | '!=' | '~' | '!~') expression
 | expression ('in' | 'contains') dateTimePrecisionSpecifier? expression
 | expression 'and' expression
 | expression ('or' | 'xor') expression
 | expression 'implies' expression
 | expression ('|' | 'union' | 'intersect' | 'except') expression
 ;

dateTimePrecision
 : 'year' | 'month' | 'week' | 'day' | 'hour' | 'minute' | 'second' | 'millisecond'
 ;

dateTimeComponent
 : dateTimePrecision
 | 'date'
 | 'time'
 | 'timezone'
 ;

pluralDateTimePrecision
 : 'years' | 'months' | 'weeks' | 'days'
 | 'hours' | 'minutes' | 'seconds' | 'milliseconds'
 ;

expressionTerm
 : term
 | expressionTerm '.' invocation
 | expressionTerm '[' expression ']'
 | 'convert' expression 'to' typeSpecifier
 | ('+' | '-') expressionTerm
 | ('start' | 'end') 'of' expressionTerm

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 173
© 2014-2017 Health Level Seven International. All rights reserved

 | dateTimeComponent 'from' expressionTerm
 | 'duration' 'in' pluralDateTimePrecision 'of' expressionTerm
 | 'width' 'of' expressionTerm
 | 'successor' 'of' expressionTerm
 | 'predecessor' 'of' expressionTerm
 | 'singleton' 'from' expressionTerm
 | 'point' 'from' expressionTerm
 | ('minimum' | 'maximum') namedTypeSpecifier
 | expressionTerm '^' expressionTerm
 | expressionTerm ('*' | '/' | 'div' | 'mod') expressionTerm
 | expressionTerm ('+' | '-' | '&') expressionTerm
 | 'if' expression 'then' expression 'else' expression
 | 'case' expression? caseExpressionItem+ 'else' expression 'end'
 | ('distinct' | 'collapse' | 'flatten') expression
 ;

caseExpressionItem
 : 'when' expression 'then' expression
 ;

dateTimePrecisionSpecifier
 : dateTimePrecision 'of'
 ;

relativeQualifier
 : 'or before'
 | 'or after'
 ;

offsetRelativeQualifier
 : 'or more'
 | 'or less'
 ;

exclusiveRelativeQualifier
 : 'more than'
 | 'less than'
 ;

quantityOffset
 : (quantityLiteral offsetRelativeQualifier?)
 | (exclusiveRelativeQualifier quantityLiteral)
 ;

intervalOperatorPhrase
 : ('starts' | 'ends' | 'occurs')? 'same' dateTimePrecision?
 (relativeQualifier | 'as') ('start' | 'end')?
 | 'properly'? 'includes' dateTimePrecisionSpecifier? ('start' | 'end')?
 | ('starts' | 'ends' | 'occurs')? 'properly'? ('during' | 'included in')
 dateTimePrecisionSpecifier?
 | ('starts' | 'ends' | 'occurs')? quantityOffset? ('before' | 'after')
 ('start' | 'end')?
 | ('starts' | 'ends' | 'occurs')? 'properly'? 'within' quantityLiteral 'of'
 ('start' | 'end')?
 | 'meets' ('before' | 'after')? dateTimePrecisionSpecifier?
 | 'overlaps' ('before' | 'after')? dateTimePrecisionSpecifier?
 | 'starts' dateTimePrecisionSpecifier?

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 174
© 2014-2017 Health Level Seven International. All rights reserved

 | 'ends' dateTimePrecisionSpecifier?
 ;

8.6 Terms

The term production rule defines the syntax for core expression terms within CQL:

term
 : invocation
 | literal
 | externalConstant
 | intervalSelector
 | tupleSelector
 | instanceSelector
 | listSelector
 | codeSelector
 | conceptSelector
 | '(' expression ')'
 ;

invocation
 : identifier
 | identifier '(' expression (',' expression)*')'
 | '$this'
 ;

intervalSelector
 'Interval' ('['|'(') expression ',' expression (']'|')')
 ;

tupleSelector
 : 'Tuple'? '{' (':' | (tupleElementSelector (',' tupleElementSelector)*)) '}'
 ;

tupleElementSelector
 : identifier ':' expression
 ;

instanceSelector
 : namedTypeSpecifier '{' (':' | (instanceElementSelector
 (',' instanceElementSelector)*)) '}'
 ;

instanceElementSelector
 : identifier ':' expression
 ;

listSelector
 : ('List' ('<' typeSpecifier '>')?)? '{' expression? (',' expression)* '}'
 ;

displayClause
 : 'display' stringLiteral
 ;

codeSelector

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 175
© 2014-2017 Health Level Seven International. All rights reserved

 : 'Code' stringLiteral 'from' codesystemIdentifier displayClause?
 ;

conceptSelector
 : 'Concept' '{' codeSelector (',' codeSelector)* '}' displayClause?
 ;

literal
 : nullLiteral
 | booleanLiteral
 | stringLiteral
 | dateTimeLiteral
 | timeLiteral
 | quantityLiteral
 ;

nullLiteral
 : 'null'
 ;

booleanLiteral
 : 'true'
 | 'false'
 ;

stringLiteral
 : STRING
 ;

dateTimeLiteral
 : DATETIME
 ;

timeLiteral
 : TIME
 ;

quantityLiteral
 : QUANTITY unit?
 ;

unit
 : dateTimePrecision
 | pluralDateTimePrecision
 | STRING // UCUM syntax for units of measure
 ;

identifier
 : IDENTIFIER | QUOTEDIDENTIFIER
 | 'all'
 | 'Code'
 | 'Concept'
 | 'contains'
 | 'date'
 | 'display'
 | 'distinct'
 | 'end'

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 176
© 2014-2017 Health Level Seven International. All rights reserved

 | 'exists'
 | 'not'
 | 'start'
 | 'time'
 | 'timezone'
 | 'version'
 | 'where'
 ;

8.7 Lexer Rules

The lexer rules define the terminal production rules in the language:

IDENTIFIER
 : ([A-Za-z] | '_')([A-Za-z0-9] | '_')*
 ;

QUANTITY
 : [0-9]+('.'[0-9]+)?
 ;

QUOTEDIDENTIFIER
 : '"' (ESC | .)*? '"'
 ;

STRING
 : ('\'') (ESC | .)*? ('\'')
 ;

WS
 : (' ' | '\r' | '\t') -> channel(HIDDEN)
 ;

NEWLINE
 : ('\n') -> channel(HIDDEN)
 ;

COMMENT
 : '/*' .*? '*/' -> channel(HIDDEN)
 ;

LINE_COMMENT
 : '//' ~[\r\n]* -> channel(HIDDEN)
 ;

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 177
© 2014-2017 Health Level Seven International. All rights reserved

9 APPENDIX B – CQL REFERENCE

This appendix provides a reference for all the system-defined types, operators, and functions that

can be used within CQL. It is intended to provide complete semantics for each available type and

operator as a companion to the Author’s and Developer’s Guides. The reference is organized by

operator category.

For each type, the definition and semantics are provided. Note that because CQL does not define

a type declaration syntax, the definitions are expressed in a pseudo-syntax.

For each operator or function, the signature, semantics, and usually an example are provided.

Note that for built-in operators, the signature is expressed in a pseudo-syntax intended to clearly

define the operator and its parameters. Although the symbolic operators may in general be prefix,

infix, or postfix operators, the signatures for each operator are defined using function definition

syntax for consistency and ease of representation. For example, the signature for the and operator

is given as:

and(left Boolean, right Boolean) Boolean

Even though and is an infix operator and would be invoked as in the following expression:

InDemographic and NeedsScreening

9.1 Types

9.1.1 Any

Definition:

simple type Any

Description:

The Any type is the maximal supertype in the CQL type system, meaning that all types derive

from Any, including list, interval, and structured types. In addition, the type of a null result is Any.

9.1.2 Boolean

Definition:

simple type Boolean

Description:

The Boolean type represents the logical boolean values true and false. The result of logical

operations within CQL use the Boolean type, and constructs within the language that expect a

conditional result, such as a where clause or conditional expression, expect results of the Boolean

type.

9.1.3 Code

Definition:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 178
© 2014-2017 Health Level Seven International. All rights reserved

structured type Code
{
 code String,
 display String,
 system String,
 version String
}

Description:

The Code type represents single terminology codes within CQL.

9.1.4 Concept

Definition:

structured type Concept
{
 codes List<Code>,
 display String
}

Description:

The Concept type represents a single terminological concept within CQL.

9.1.5 DateTime

Definition:

simple type DateTime

Description:

The DateTime type represents date and time values with potential uncertainty within CQL.

CQL supports date and time values in the range @0001-01-01T00:00:00.0 to @9999-12-

31T23:59:59.999 with a 1 millisecond step size.

9.1.6 Decimal

Definition:

simple type Decimal

Description:

The Decimal type represents real values within CQL.

CQL supports decimal values in the range -10^28-10^-8 to 10^28-10^-8 with a step size of 10^-8.

9.1.7 Integer

Definition:

simple type Integer

Description:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 179
© 2014-2017 Health Level Seven International. All rights reserved

The Integer type represents whole number values within CQL.

CQL supports integer values in the range -2^31 to 2^31-1 with a step size of 1.

9.1.8 Quantity

Definition:

structured type Quantity
{
 value Decimal
 unit String
}

Description:

The Quantity type represents quantities with a specified unit within CQL.

9.1.9 String

Definition:

simple type String

Description:

The String type represents string values within CQL.

CQL supports string values up to 2^31-1 characters in length.

For string literals, CQL uses standard escape sequences:

Escape Character
\' Single-quote
\" Double-quote
\r Carriage Return
\n Line Feed
\t Tab
\f Form Feed
\\ Backslash
\uXXXX Unicode character, where XXXX is the

hexadecimal representation of the character

9.1.10 Time

Definition:

simple type Time

Description:

The Time type represents time-of-day values within CQL.

CQL supports time values in the range @T00:00:00.0 to @T23:59:59.999 with a step size of 1

millisecond.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 180
© 2014-2017 Health Level Seven International. All rights reserved

9.2 Logical Operators

9.2.1 And

Signature:

and (left Boolean, right Boolean) Boolean

Description:

The and operator returns true if both its arguments are true. If either argument is false, the result

is false. Otherwise, the result is null.

The following table defines the truth table for this operator:

 TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

TABLE 9-A

Example:

The following examples illustrate the behavior of the and operator:

define IsTrue = true and true
define IsFalse = true and false
define IsAlsoFalse = false and null
define IsNull = true and null

9.2.2 Implies

Signature:

implies (left Boolean, right Boolean) Boolean

Description:

The implies operator returns the logical implication of its arguments. This means that if the left

operand evaluates to true, this operator returns the boolean evaluation of the right operand. If the

left operand evaluates to false, this operator returns true. Otherwise, this operator returns true if

the right operand evaluates to true, and null otherwise.

The following table defines the truth table for this operator:

 TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE TRUE TRUE TRUE

NULL TRUE NULL NULL

TABLE 9-B

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 181
© 2014-2017 Health Level Seven International. All rights reserved

9.2.3 Not

Signature:

not (argument Boolean) Boolean

Description:

The not operator returns true if the argument is false and false if the argument is true. Otherwise,

the result is null.

The following table defines the truth table for this operator:

 NOT

TRUE FALSE

FALSE TRUE

NULL NULL

TABLE 9-C

9.2.4 Or

Signature:

or (left Boolean, right Boolean) Boolean

Description:

The or operator returns true if either of its arguments are true. If both arguments are false, the

result is false. Otherwise, the result is null.

The following table defines the truth table for this operator:

 TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

TABLE 9-D

Example:

The following examples illustrate the behavior of the or operator:

define IsTrue = true or false
define IsAlsoTrue = true or null
define IsFalse = false or false
define IsNull = false or null

9.2.5 Xor

Signature:

xor (left Boolean, right Boolean) Boolean

Description:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 182
© 2014-2017 Health Level Seven International. All rights reserved

The xor (exclusive or) operator returns true if one argument is true and the other is false. If both

arguments are true or both arguments are false, the result is false. Otherwise, the result is null.

The following table defines the truth table for this operator:

 TRUE FALSE NULL

TRUE FALSE TRUE NULL

FALSE TRUE FALSE NULL

NULL NULL NULL NULL

TABLE 9-E

9.3 Type Operators

9.3.1 As

Signature:

as<T>(argument Any) T
cast as<T>(argument Any) T

Description:

The as operator allows the result of an expression to be cast as a given target type. This allows

expressions to be written that are statically typed against the expected run-time type of the

argument.

If the argument is not of the specified type at run-time the result is null.

The cast prefix indicates that if the argument is not of the specified type at run-time then an

exception is thrown.

Example:

The following examples illustrate the use of the as operator.

define AllProcedures: [Procedure]
define ImagingProcedures:
 AllProcedures P
 where P is ImagingProcedure
 return P as ImagingProcedure
define RuntimeError:
 ImagingProcedures P
 return cast P as Observation

9.3.2 Children

Signature:

Children(argument Any) List<Any>

Description:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 183
© 2014-2017 Health Level Seven International. All rights reserved

For structured types, the Children operator returns a list of all the values of the elements of the

type. List-valued elements are expanded and added to the result individually, rather than as a

single list.

For list types, the result is the same as invoking Children on each element in the list and

flattening the resulting lists into a single result.

If the source is null, the result is null.

9.3.3 Convert

Signature:

convert to<T>(argument Any) T

Description:

The convert operator converts a value to a specific type. The result of the operator is the value of

the argument converted to the target type, if possible. Note that use of this operator may result in

a run-time exception being thrown if there is no valid conversion from the actual value to the

target type.

The following table lists the conversions supported in CQL:

From\
To

Boole
an

Intege
r

Decim
al

Quanti
ty

String Dateti
me

Time Code Conce
pt

List(Code)

Boole
an

N/A - - - Explicit - - - - -

Intege
r

- N/A Implicit - Explicit - - - - -

Decim
al

- - N/A - Explicit - - - - -

Quanti
ty

- - - N/A Explicit - - - - -

String Explicit Explicit Explicit Explicit N/A Explicit Explicit - - -

Dateti
me

- - - - Explicit N/A - - - -

Time - - - - Explicit - N/A - - -

Code - - - - - - - N/A Implicit -

Conce
pt

- - - - - - - - N/A Explicit

List(C
ode)

 Implicit N/A

TABLE 9-F

For conversions between date/time and string values, ISO-8601 standard format is used:

yyyy-MM-ddThh:mm:ss.fff(Z | +/- hh:mm)

For example, the following are valid string representations for date/time values:

'2014-01-01T14:30:00.0Z' // January 1st, 2014, 2:30PM UTC
'2014-01-01T14:30:00.0-07:00' // January 1st, 2014, 2:30PM Mountain Standard (GMT-7:00)
'T14:30:00.0Z' // 2:30PM UTC
'T14:30:00.0-07:00' // 2:30PM Mountain Standard (GMT-7:00)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 184
© 2014-2017 Health Level Seven International. All rights reserved

For specific semantics for each conversion, refer to the explicit conversion operator

documentation.

9.3.4 Descendents

Signature:

Descendents(argument Any) List<Any>

Description:

For structured types, the Descendents operator returns a list of all the values of the elements of the

type, recursively. List-valued elements are expanded and added to the result individually, rather

than as a single list.

For list types, the result is the same as invoking Descendents on each element in the list and

flattening the resulting lists into a single result.

If the source is null, the result is null.

9.3.5 Is

Signature:

is<T>(argument Any) Boolean

Description:

The is operator allows the type of a result to be tested. If the run-time type of the argument is of

the type being tested, the result of the operator is true; otherwise, the result is false.

9.3.6 ToBoolean

Signature:

ToBoolean(argument String) Boolean

Description:

The ToBoolean operator converts the value of its argument to a Boolean value. The operator

accepts the following string representations:

String Representation Boolean Value

true t yes y 1 true

false f no n 0 false

TABLE 9-G

Note that the operator will ignore case when interpreting the string as a Boolean value.

If the input cannot be interpreted as a valid Boolean value, a run-time error is thrown.

If the argument is null, the result is null.

9.3.7 ToConcept

Signature:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 185
© 2014-2017 Health Level Seven International. All rights reserved

ToConcept(argument Code) Concept

Description:

The ToConcept operator converts a value of type Code to a Concept value with the given Code as its

primary and only Code. If the Code has a display value, the resulting Concept will have the same

display value.

If the argument is null, the result is null.

9.3.8 ToDateTime

Signature:

ToDateTime(argument String) DateTime

Description:

The ToDateTime operator converts the value of its argument to a DateTime value. The operator

expects the string to be formatted using the ISO-8601 date/time representation:

YYYY-MM-DDThh:mm:ss.fff(+|-)hh:mm

In addition, the string must be interpretable as a valid date/time value.

For example, the following are valid string representations for date/time values:

'2014-01-01' // January 1st, 2014
'2014-01-01T14:30:00.0Z' // January 1st, 2014, 2:30PM UTC
'2014-01-01T14:30:00.0-07:00' // January 1st, 2014, 2:30PM Mountain Standard (GMT-7:00)

If the input string is not formatted correctly, or does not represent a valid date/time value, a run-

time error is thrown.

As with date/time literals, date/time values may be specified to any precision. If no timezone is

supplied, the timezone of the evaluation request timestamp is assumed.

If the argument is null, the result is null.

9.3.9 ToDecimal

Signature:

ToDecimal(argument String) Decimal

Description:

The ToDecimal operator converts the value of its argument to a Decimal value. The operator

accepts strings using the following format:

(+|-)?#0(.0#)?

Meaning an optional polarity indicator, followed by any number of digits (including none),

followed by at least one digit, followed optionally by a decimal point, at least one digit, and any

number of additional digits (including none).

Note that the decimal value returned by this operator must be limited in precision and scale to the

maximum precision and scale representable for Decimal values within CQL.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 186
© 2014-2017 Health Level Seven International. All rights reserved

If the input string is not formatted correctly, or cannot be interpreted as a valid Decimal value, a

run-time error is thrown.

If the argument is null, the result is null.

9.3.10 ToInteger

Signature:

ToInteger(argument String) Integer

Description:

The ToInteger operator converts the value of its argument to an Integer value. The operator

accepts strings using the following format:

(+|-)?#0

Meaning an optional polarity indicator, followed by any number of digits (including none),

followed by at least one digit.

Note that the integer value returned by this operator must be a valid value in the range

representable for Integer values in CQL.

If the input string is not formatted correctly, or cannot be interpreted as a valid Integer value, a

run-time error is thrown.

If the argument is null, the result is null.

9.3.11 ToQuantity

Signature:

ToQuantity(argument String) Quantity

Description:

The ToQuantity operator converts the value of its argument to a Quantity value. The operator

accepts strings using the following format:

(+|-)?#0(.0#)?('<unit>')?

Meaning an optional polarity indicator, followed by any number of digits (including none)

followed by at least one digit, optionally followed by a decimal point, at least one digit, and any

number of additional digits, all optionally followed by a unit designator as a string literal

specifying a valid UCUM unit of measure. Spaces are allowed between the quantity value and

the unit designator.

Note that the decimal value of the quantity returned by this operator must be a valid value in the

range representable for Decimal values in CQL.

If the input string is not formatted correctly, or cannot be interpreted as a valid Quantity value, a

run-time error is thrown.

If the argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 187
© 2014-2017 Health Level Seven International. All rights reserved

9.3.12 ToString

Signature:

ToString(argument Boolean) String
ToString(argument Integer) String
ToString(argument Decimal) String
ToString(argument Quantity) String
ToString(argument DateTime) String
ToString(argument Time) String

Description:

The ToString operator converts the value of its argument to a String value. The operator uses the

following string representations for each type:

Type String Representation

Boolean true|false

Integer (-)?#0

Decimal (-)?#0.0#

Quantity (-)?#0.0# '<unit>'

DateTime YYYY-MM-DDThh:mm:ss.fff(+|-)hh:mm

Time Thh:mm:ss.fff(+|-)hh:mm

TABLE 9-H

If the argument is null, the result is null.

9.3.13 ToTime

Signature:

ToTime(argument String) Time

Description:

The ToTime operator converts the value of its argument to a Time value. The operator expects the

string to be formatted using ISO-8601 time representation:

Thh:mm:ss.fff(+|-)hh:mm

In addition, the string must be interpretable as a valid time-of-day value.

For example, the following are valid string representations for time-of-day values:

'T14:30:00.0Z' // 2:30PM UTC
'T14:30:00.0-07:00' // 2:30PM Mountain Standard (GMT-7:00)

If the input string is not formatted correctly, or does not represent a valid time-of-day value, a

run-time error is thrown.

As with time-of-day literals, time-of-day values may be specified to any precision. If no timezone

is supplied, the timezone of the evaluation request timestamp is assumed.

If the argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 188
© 2014-2017 Health Level Seven International. All rights reserved

9.4 Nullological Operators

9.4.1 Coalesce

Signature:

Coalesce<T>(argument1 T, argument2 T) T
Coalesce<T>(argument1 T, argument2 T, argument3 T) T
Coalesce<T>(argument1 T, argument2 T, argument3 T, argument4 T) T
Coalesce<T>(argument1 T, argument2 T, argument3 T, argument4 T, argument5 T) T
Coalesce<T>(arguments List<T>) T

Description:

The Coalesce operator returns the first non-null result in a list of arguments. If all arguments

evaluate to null, the result is null.

The static type of the first argument determines the type of the result, and all subsequent

arguments must be of that same type.

9.4.2 IsNull

Signature:

is null(argument Any) Boolean

Description:

The is null operator determines whether or not its argument evaluates to null. If the argument

evaluates to null, the result is true; otherwise, the result is false.

9.4.3 IsFalse

Signature:

is false(argument Boolean) Boolean

Description:

The is false operator determines whether or not its argument evaluates to false. If the argument

evaluates to false, the result is true; otherwise, the result is false.

9.4.4 IsTrue

Signature:

is true(argument Boolean) Boolean

Description:

The is true operator determines whether or not its argument evaluates to true. If the argument

evaluates to true, the result is true; otherwise, the result is false.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 189
© 2014-2017 Health Level Seven International. All rights reserved

9.5 Comparison Operators

9.5.1 Between

Signature:

between(argument Integer, low Integer, high Integer) Boolean
between(argument Decimal, low Decimal, high Decimal) Boolean
between(argument Quantity, low Quantity, high Quantity) Boolean
between(argument DateTime, low DateTime, high DateTime) Boolean
between(argument Time, low Time, high Time) Boolean
between(argument String, low String, high String) Boolean

Description:

The between operator determines whether the first argument is within a given range, inclusive. If

the first argument is greater than or equal to the low argument, and less than or equal to the high

argument, the result is true, otherwise, the result is false.

For comparisons involving quantities, the dimensions of each quantity must be the same, but not

necessarily the unit. For example, units of 'cm' and 'm' are comparable, but units of 'cm2' and

'cm' are not. Attempting to operate on quantities with invalid units will result in a run-time error.

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

If any argument is null, the result is null.

9.5.2 Equal

Signature:

=<T>(left T, right T) Boolean

Description:

The equal (=) operator returns true if the arguments are equal; false if the arguments are known

unequal, and null otherwise. Equality semantics are defined to be value-based.

For simple types, this means that equality returns true if and only if the result of each argument

evaluates to the same value.

For decimal values, trailing zeroes are ignored.

For quantities, this means that the dimensions of each quantity must be the same, but not

necessarily the unit. For example, units of 'cm' and 'm' are comparable, but units of 'cm2' and

'cm' are not. Attempting to operate on quantities with invalid units will result in a run-time error.

For tuple types, this means that equality returns true if and only if the tuples are of the same type,

and the values for all elements by name are equal.

For list types, this means that equality returns true if and only if the lists contain elements of the

same type, have the same number of elements, and for each element in the lists, in order, the

elements are equal using the same semantics.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 190
© 2014-2017 Health Level Seven International. All rights reserved

For interval types, equality returns true if and only if the intervals are over the same point type,

and they have the same value for the starting and ending points of the interval as determined by

the Start and End operators.

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

If either argument is null, the result is null.

9.5.3 Equivalent

Signature:

~<T>(left T, right T) Boolean

Description:

The ~ operator returns true if the arguments are the same value, or if they are both null; and

false otherwise.

For tuple types, this means that two tuple values are equivalent if and only if the tuples are of the

same type, and the values for all elements by name are equivalent.

For list types, this means that two list values are equivalent if and only if the lists contain

elements of the same type, have the same number of elements, and for each element in the lists,

in order, the elements are equivalent.

For interval types, this means that two intervals are equivalent if and only if the intervals are over

the same point type, and the starting and ending points of the intervals as determined by the Start

and End operators are equivalent.

For Code values, equivalence is defined based on the code, system, and version elements only.

The display element is ignored for the purposes of determining Code equivalence.

For Concept values, equivalence is defined as a non-empty intersection of the codes in each

Concept.

Note that this operator will always return true or false, even if either or both of its arguments are

null, or contain null components.

This operator, and the corresponding notion of equivalence, are used throughout CQL to define

the behavior of membership and containment operators such as in, contains, includes, IndexOf(),

etc. This provides consistent and intuitive behavior in the presence of missing information in list

and membership contexts.

9.5.4 Greater

Signature:

>(left Integer, right Integer) Boolean
>(left Decimal, right Decimal) Boolean
>(left Quantity, right Quantity) Boolean
>(left DateTime, right DateTime) Boolean

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 191
© 2014-2017 Health Level Seven International. All rights reserved

>(left Time, right Time) Boolean
>(left String, right String) Boolean

Description:

The greater (>) operator returns true if the first argument is greater than the second argument.

For comparisons involving quantities, the dimensions of each quantity must be the same, but not

necessarily the unit. For example, units of 'cm' and 'm' are comparable, but units of 'cm2' and

'cm' are not. Attempting to operate on quantities with invalid units will result in a run-time error.

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

If either argument is null, the result is null.

9.5.5 Greater Or Equal

Signature:

>=(left Integer, right Integer) Boolean
>=(left Decimal, right Decimal) Boolean
>=(left Quantity, right Quantity) Boolean
>=(left DateTime, right DateTime) Boolean
>=(left Time, right Time) Boolean
>=(left String, right String) Boolean

Description:

The greater or equal (>=) operator returns true if the first argument is greater than or equal to the

second argument.

For comparisons involving quantities, the dimensions of each quantity must be the same, but not

necessarily the unit. For example, units of 'cm' and 'm' are comparable, but units of 'cm2' and

'cm' are not. Attempting to operate on quantities with invalid units will result in a run-time error.

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

If either argument is null, the result is null.

9.5.6 Less

Signature:

<(left Integer, right Integer) Boolean
<(left Decimal, right Decimal) Boolean
<(left Quantity, right Quantity) Boolean
<(left DateTime, right DateTime) Boolean
<(left Time, right Time) Boolean
<(left String, right String) Boolean

Description:

The less (<) operator returns true if the first argument is less than the second argument.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 192
© 2014-2017 Health Level Seven International. All rights reserved

For comparisons involving quantities, the dimensions of each quantity must be the same, but not

necessarily the unit. For example, units of 'cm' and 'm' are comparable, but units of 'cm2' and

'cm' are not. Attempting to operate on quantities with invalid units will result in a run-time error.

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

If either argument is null, the result is null.

9.5.7 Less Or Equal

Signature:

<=(left Integer, right Integer) Boolean
<=(left Decimal, right Decimal) Boolean
<=(left Quantity, right Quantity) Boolean
<=(left DateTime, right DateTime) Boolean
<=(left Time, right Time) Boolean
<=(left String, right String) Boolean

Description:

The less or equal (<=) operator returns true if the first argument is less than or equal to the

second argument.

For comparisons involving quantities, the dimensions of each quantity must be the same, but not

necessarily the unit. For example, units of 'cm' and 'm' are comparable, but units of 'cm2' and

'cm' are not. Attempting to operate on quantities with invalid units will result in a run-time error.

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

If either argument is null, the result is null.

9.5.8 Not Equal

Signature:

!=<T>(left T, right T) Boolean

Description:

The not equal (!=) operator returns true if its arguments are not the same value.

The not equal operator is a shorthand for invocation of logical negation (not) of the equal

operator.

9.5.9 Not Equivalent

Signature:

!~<T>(left T, right T) Boolean

Description:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 193
© 2014-2017 Health Level Seven International. All rights reserved

The not equivalent (!~) operator returns true if its arguments are not equivalent.

The not equivalent operator is a shorthand for invocation of logical negation (not) of the

equivalent operator.

9.6 Arithmetic Operators

9.6.1 Abs

Signature:

Abs(argument Integer) Integer
Abs(argument Decimal) Decimal
Abs(argument Quantity) Quantity

Description:

The Abs operator returns the absolute value of its argument.

When taking the absolute value of a quantity, the unit is unchanged.

If the argument is null, the result is null.

9.6.2 Add

Signature:

+(left Integer, right Integer) Integer
+(left Decimal, right Decimal) Decimal
+(left Quantity, right Quantity) Quantity

Description:

The add (+) operator performs numeric addition of its arguments.

When invoked with mixed Integer and Decimal arguments, the Integer argument will be

implicitly converted to Decimal.

When adding quantities, the dimensions of each quantity must be the same, but not necessarily

the unit. For example, units of 'cm' and 'm' can be added, but units of 'cm2' and 'cm' cannot.

The unit of the result will be the most granular unit of either input. Attempting to operate on

quantities with invalid units will result in a run-time error.

If either argument is null, the result is null.

9.6.3 Ceiling

Signature:

Ceiling(argument Decimal) Integer

Description:

The Ceiling operator returns the first integer greater than or equal to the argument.

When invoked with an Integer argument, the argument will be implicitly converted to Decimal.

If the argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 194
© 2014-2017 Health Level Seven International. All rights reserved

9.6.4 Divide

Signature:

/(left Decimal, right Decimal) Decimal
/(left Quantity, right Decimal) Quantity
/(left Quantity, right Quantity) Quantity

Description:

The divide (/) operator performs numeric division of its arguments. Note that this operator is

Decimal division; for Integer division, use the truncated divide (div) operator.

When invoked with Integer arguments, the arguments will be implicitly converted to Decimal.

For division operations involving quantities, the resulting quantity will have the appropriate unit.

For example:

12 'cm2' / 3 'cm'

In this example, the result will have a unit of 'cm'.

If either argument is null, the result is null.

9.6.5 Floor

Signature:

Floor(argument Decimal) Integer

Description:

The Floor operator returns the first integer less than or equal to the argument.

When invoked with an Integer argument, the argument will be implicitly converted to Decimal.

If the argument is null, the result is null.

9.6.6 Exp

Signature:

Exp(argument Decimal) Decimal

Description:

The Exp operator raises e to the power of its argument.

When invoked with an Integer argument, the argument will be implicitly converted to Decimal.

If the argument is null, the result is null.

9.6.7 Log

Signature:

Log(argument Decimal, base Decimal) Decimal

Description:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 195
© 2014-2017 Health Level Seven International. All rights reserved

The Log operator computes the logarithm of its first argument, using the second argument as the

base.

When invoked with Integer arguments, the arguments will be implicitly converted to Decimal.

If either argument is null, the result is null.

9.6.8 Ln

Signature:

Ln(argument Decimal) Decimal

Description:

The Ln operator computes the natural logarithm of its argument.

When invoked with an Integer argument, the argument will be implicitly converted to Decimal.

If the argument is null, the result is null.

9.6.9 Maximum

Signature:

maximum<T>() T

Description:

The maximum operator returns the maximum representable value for the given type.

The maximum operator is defined for the Integer, Decimal, DateTime, and Time types.

For Integer, maximum returns the maximum signed 32-bit integer, 231 - 1.

For Decimal, maximum returns the maximum representable decimal value, (1037 – 1) / 108

(9999999999999999999999999999.99999999).

For DateTime, maximum returns the maximum representable date/time value, DateTime(9999, 12,

31, 23, 59, 59, 999).

For Time, maximum returns the maximum representable time value, Time(23, 59, 59, 999).

For any other type, attempting to invoke maximum results in an error.

9.6.10 Minimum

Signature:

minimum<T>() T

Description:

The minimum operator returns the minimum representable value for the given type.

The minimum operator is defined for the Integer, Decimal, DateTime, and Time types.

For Integer, minimum returns the minimum signed 32-bit integer, -231.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 196
© 2014-2017 Health Level Seven International. All rights reserved

For Decimal, minimum returns the minimum representable decimal value, (-1037 – 1) / 108 (-

9999999999999999999999999999.99999999).

For DateTime, minimum returns the minimum representable date/time value, DateTime(1, 1, 1, 0,

0, 0, 0).

For Time, minimum returns the minimum representable time value, Time(0, 0, 0, 0).

For any other type, attempting to invoke minimum results in an error.

9.6.11 Modulo

Signature:

mod(left Integer, right Integer) Integer
mod(left Decimal, right Decimal) Decimal

Description:

The mod operator computes the remainder of the division of its arguments.

When invoked with mixed Integer and Decimal arguments, the Integer argument will be

implicitly converted to Decimal.

If either argument is null, the result is null.

9.6.12 Multiply

Signature:

*(left Integer, right Integer) Integer
*(left Decimal, right Decimal) Decimal
*(left Decimal, right Quantity) Quantity
*(left Quantity, right Decimal) Quantity
*(left Quantity, right Quantity) Quantity

Description:

The multiply (*) operator performs numeric multiplication of its arguments.

When invoked with mixed Integer and Decimal arguments, the Integer argument will be

implicitly converted to Decimal.

For multiplication operations involving quantities, the resulting quantity will have the appropriate

unit. For example:

12 'cm' * 3 'cm'
3 'cm' * 12 'cm2'

In this example, the first result will have a unit of 'cm2', and the second result will have a unit of

'cm3'.

If either argument is null, the result is null.

9.6.13 Negate

Signature:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 197
© 2014-2017 Health Level Seven International. All rights reserved

-(argument Integer) Integer
-(argument Decimal) Decimal
-(argument Quantity) Quantity

Description:

The negate (-) operator returns the negative of its argument.

When negating quantities, the unit is unchanged.

If the argument is null, the result is null.

9.6.14 Predecessor

Signature:

predecessor of<T>(argument T) T

Description:

The predecessor operator returns the predecessor of the argument. For example, the predecessor

of 2 is 1. If the argument is already the minimum value for the type, a run-time error is thrown.

The predecessor operator is defined for the Integer, Decimal, DateTime, and Time types.

For Integer, predecessor is equivalent to subtracting 1.

For Decimal, predecessor is equivalent to subtracting the minimum precision value for the

Decimal type, or 10^-08.

For DateTime and Time values, predecessor is equivalent to subtracting a time-unit quantity for

the lowest specified precision of the value. For example, if the DateTime is fully specified,

predecessor is equivalent to subtracting 1 millisecond; if the DateTime is specified to the second,

predecessor is equivalent to subtracting one second, etc.

If the argument is null, the result is null.

9.6.15 Power

Signature:

^(argument Integer, exponent Integer) Integer
^(argument Decimal, exponent Decimal) Decimal

Description:

The power (^) operator raises the first argument to the power given by the second argument.

When invoked with mixed Integer and Decimal arguments, the Integer argument will be

implicitly converted to Decimal.

If either argument is null, the result is null.

9.6.16 Round

Signature:

Round(argument Decimal) Decimal
Round(argument Decimal, precision Integer) Decimal

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 198
© 2014-2017 Health Level Seven International. All rights reserved

Description:

The Round operator returns the nearest whole number to its argument. The semantics of round are

defined as a traditional round, meaning that a decimal value of 0.5 or higher will round to 1.

When invoked with an Integer argument, the argument will be implicitly converted to Decimal.

If the argument is null, the result is null.

Precision determines the decimal place at which the rounding will occur. If precision is not

specified or null, 0 is assumed.

9.6.17 Subtract

Signature:

-(left Integer, right Integer) Integer
-(left Decimal, right Decimal) Decimal
-(left Quantity, right Quantity) Quantity

Description:

The subtract (-) operator performs numeric subtraction of its arguments.

When invoked with mixed Integer and Decimal arguments, the Integer argument will be

implicitly converted to Decimal.

When subtracting quantities, the dimensions of each quantity must be the same, but not

necessarily the unit. For example, units of 'cm' and 'm' can be subtracted, but units of 'cm2' and

'cm' cannot. The unit of the result will be the most granular unit of either input. Attempting to

operate on quantities with invalid units will result in a run-time error.

If either argument is null, the result is null.

9.6.18 Successor

Signature:

successor of<T>(argument T) T

Description:

The successor operator returns the successor of the argument. For example, the successor of 1 is

2. If the argument is already the maximum value for the type, a run-time error is thrown.

The successor operator is defined for the Integer, Decimal, DateTime, and Time types.

For Integer, successor is equivalent to adding 1.

For Decimal, successor is equivalent to adding the minimum precision value for the Decimal type,

or 10^-08.

For DateTime and Time values, successor is equivalent to adding a time-unit quantity for the

lowest specified precision of the value. For example, if the DateTime is fully specified, successor

is equivalent to adding 1 millisecond; if the DateTime is specified to the second, successor is

equivalent to adding one second, etc.

If the argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 199
© 2014-2017 Health Level Seven International. All rights reserved

9.6.19 Truncate

Signature:

Truncate(argument Decimal) Integer

Description:

The Truncate operator returns the integer component of its argument.

When invoked with an Integer argument, the argument will be implicitly converted to Decimal.

If the argument is null, the result is null.

9.6.20 Truncated Divide

Signature:

div(left Integer, right Integer) Integer
div(left Decimal, right Decimal) Decimal

Description:

The div operator performs truncated division of its arguments.

When invoked with mixed Integer and Decimal arguments, the Integer argument will be

implicitly converted to Decimal.

If either argument is null, the result is null.

9.7 String Operators

9.7.1 Combine

Signature:

Combine(source List<String>) String
Combine(source List<String>, separator String) String

Description:

The Combine operator combines a list of strings, optionally separating each string with the given

separator.

If either argument is null, or any element in the source list of strings is null, the result is null.

9.7.2 Concatenate

Signature:

+(left String, right String) String
&(left String, right String) String

Description:

The concatenate (+ or &) operator performs string concatenation of its arguments.

When using +, if either argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 200
© 2014-2017 Health Level Seven International. All rights reserved

When using &, null arguments are treated as an empty string ('').

9.7.3 EndsWith

Signature:

EndsWith(argument String, suffix String) Boolean

Description:

The EndsWith operator returns true if the given string starts with the given suffix.

If the suffix is the empty string, the result is true.

If either argument is null, the result is null.

9.7.4 Indexer

Signature:

[](argument String, index Integer) String

Description:

The indexer ([]) operator returns the character at the indexth position in a string.

Indexes in strings are defined to be 0-based.

If either argument is null, the result is null.

If the index is greater than the length of the string being indexed, the result is null.

9.7.5 LastPositionOf

Signature:

LastPositionOf(pattern String, argument String) Integer

Description:

The LastPositionOf operator returns the 0-based index of the last appearance of the given pattern

in the given string.

If the pattern is not found, the result is -1.

If either argument is null, the result is null.

9.7.6 Length

Signature:

Length(argument String) Integer

Description:

The Length operator returns the number of characters in a string.

If the argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 201
© 2014-2017 Health Level Seven International. All rights reserved

9.7.7 Lower

Signature:

Lower(argument String) String

Description:

The Lower operator returns the given string with all characters converted to their lower case

equivalents.

Note that the definition of lowercase for a given character is a locale-dependent determination,

and is not specified by CQL. Implementations are expected to provide appropriate and consistent

handling of locale for their environment.

If the argument is null, the result is null.

9.7.8 Matches

Signature:

Matches(argument String, pattern String) Boolean

Description:

The Matches operator returns true if the given string matches the given regular expression pattern.

Regular expressions should function consistently, regardless of any culture- and locale-specific

settings in the environment, should be case-sensitive, use single line mode, and allow Unicode

characters.

If either argument is null, the result is null.

Platforms will typically use native regular expression implementations. These are typically fairly

similar, but there will always be small differences. As such, CQL does not prescribe a particular

dialect, but recommends the use of the dialect defined as part of XML Schema 1.1 as the dialect

most likely to be broadly supported and understood.

9.7.9 PositionOf

Signature:

PositionOf(pattern String, argument String) Integer

Description:

The PositionOf operator returns the 0-based index of the given pattern in the given string.

If the pattern is not found, the result is -1.

If either argument is null, the result is null.

9.7.10 ReplaceMatches

Signature:

Matches(argument String, pattern String, substitution String) String

Description:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 202
© 2014-2017 Health Level Seven International. All rights reserved

The ReplaceMatches operator matches the given string using the given regular expression pattern,

replacing each match with the given substitution. The substitution string may refer to identified

match groups in the regular expression. Regular expressions should function consistently,

regardless of any culture- and locale-specific settings in the environment, should be case-

sensitive, use single line mode, and allow Unicode characters.

If any argument is null, the result is null.

Platforms will typically use native regular expression implementations. These are typically fairly

similar, but there will always be small differences. As such, CQL does not prescribe a particular

dialect, but recommends the use of the dialect defined as part of XML Schema 1.1 as the dialect

most likely to be broadly supported and understood.

9.7.11 Split

Signature:

Split(stringToSplit String, separator String) List<String>

Description:

The Split operator splits a string into a list of strings using a separator.

If the stringToSplit argument is null, the result is null.

If the stringToSplit argument does not contain any appearances of the separator, the result is a

list of strings containing one element that is the value of the stringToSplit argument.

9.7.12 StartsWith

Signature:

StartsWith(argument String, prefix String) Boolean

Description:

The StartsWith operator returns true if the given string starts with the given prefix.

If the prefix is the empty string, the result is true.

If either argument is null, the result is null.

9.7.13 Substring

Signature:

Substring(stringToSub String, startIndex Integer) String
Substring(stringToSub String, startIndex Integer, length Integer) String

Description:

The Substring operator returns the string within stringToSub, starting at the 0-based index

startIndex, and consisting of length characters.

If length is ommitted, the substring returned starts at startIndex and continues to the end of

stringToSub.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 203
© 2014-2017 Health Level Seven International. All rights reserved

If stringToSub or startIndex is null, or startIndex is out of range, the result is null.

9.7.14 Upper

Signature:

Upper(argument String) String

Description:

The Upper operator returns the given string with all characters converted to their upper case

equivalents.

Note that the definition of uppercase for a given character is a locale-dependent determination,

and is not specified by CQL. Implementations are expected to provide appropriate and consistent

handling of locale for their environment.

If the argument is null, the result is null.

9.8 Date/Time Operators

9.8.1 Add

Signature:

+(left DateTime, right Quantity) DateTime
+(left Time, right Quantity) Time

Description:

The add (+) operator returns the value of the given date/time, incremented by the time-valued

quantity, respecting variable length periods for calendar years and months.

For DateTime values, the quantity unit must be one of: years, months, weeks, days, hours, minutes,

seconds, or milliseconds.

For Time values, the quantity unit must be one of: hours, minutes, seconds, or milliseconds.

The operation is performed by converting the time-based quantity to the highest specified

granularity in the date/time value (truncating any resulting decimal portion) and then adding it to

the date/time value. For example, the following addition:

DateTime(2014) + 24 months

This example results in the value DateTime(2016) even though the date/time value is not specified

to the level of precision of the time-valued quantity.

Note also that this means that if decimals appear in the time-valued quantities, the fractional

component will be ignored.

If either argument is null, the result is null.

9.8.2 After

Signature:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 204
© 2014-2017 Health Level Seven International. All rights reserved

after precision of(left DateTime, right DateTime) Boolean

after precision of(left Time, right Time) Boolean

Description:

The after-precision-of operator compares two date/time values to the specified precision to

determine whether the first argument is the after the second argument. Precision must be one of:

year, month, week, day, hour, minute, second, or millisecond.

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

As with all date/time calculations, comparisons are performed respecting the timezone offset.

If either or both arguments are null, the result is null.

9.8.3 Before

Signature:

before precision of(left DateTime, right DateTime) Boolean

before precision of(left Time, right Time) Boolean

Description:

The before-precision-of operator compares two date/time values to the specified precision to

determine whether the first argument is the before the second argument. Precision must be one

of: year, month, week, day, hour, minute, second, or millisecond.

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

As with all date/time calculations, comparisons are performed respecting the timezone offset.

If either or both arguments are null, the result is null.

9.8.4 DateTime

Signature:

DateTime(year Integer) DateTime
DateTime(year Integer, month Integer) DateTime
DateTime(year Integer, month Integer, day Integer) DateTime
DateTime(year Integer, month Integer, day Integer,
 hour Integer) DateTime
DateTime(year Integer, month Integer, day Integer,
 hour Integer, minute Integer) DateTime
DateTime(year Integer, month Integer, day Integer,
 hour Integer, minute Integer, second Integer) DateTime
DateTime(year Integer, month Integer, day Integer,
 hour Integer, minute Integer, second Integer, millisecond Integer) DateTime
DateTime(year Integer, month Integer, day Integer,
 hour Integer, minute Integer, second Integer, millisecond Integer,
 timezoneOffset Decimal) DateTime

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 205
© 2014-2017 Health Level Seven International. All rights reserved

Description:

The DateTime operator constructs a date/time value from the given components.

At least one component other than timezoneOffset must be specified, and no component may be

specified at a precision below an unspecified precision. For example, hour may be null, but if it

is, minute, second, and millisecond must all be null as well.

If timezoneOffset is not specified, it is defaulted to the timezone offset of the evaluation request.

9.8.5 Date/Time Component From

Signature:

precision from(argument DateTime) Integer

precision from(argument Time) Integer
timezone from(argument DateTime) Decimal
timezone from(argument Time) Decimal
date from(argument DateTime) DateTime
time from(argument DateTime) Time

Description:

The component-from operator returns the specified component of the argument.

For DateTime values, precision must be one of: year, month, day, hour, minute, second, or

millisecond.

For Time values, precision must be one of: hour, minute, second, or millisecond.

If the argument is null, or is not specified to the level of precision being extracted, the result is

null.

9.8.6 Difference

Signature:

difference in precision between(low DateTime, high DateTime) Integer

difference in precision between(low Time, high Time) Integer

Description:

The difference-between operator returns the number of boundaries crossed for the specified

precision between the first and second arguments. If the first argument is after the second

argument, the result is negative. The result of this operation is always an integer; any fractional

boundaries are dropped.

For DateTime values, precision must be one of: years, months, weeks, days, hours, minutes, seconds,

or milliseconds.

For Time values, precision must be one of: hours, minutes, seconds, or milliseconds.

If either argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 206
© 2014-2017 Health Level Seven International. All rights reserved

9.8.7 Duration

Signature:

duration between(low DateTime, high DateTime) Integer

duration between(low Time, high Time) Integer

Description:

The duration-between operator returns the number of whole calendar periods for the specified

precision between the first and second arguments. If the first argument is after the second

argument, the result is negative. The result of this operation is always an integer; any fractional

periods are dropped.

For DateTime values, duration must be one of: years, months, weeks, days, hours, minutes, seconds,

or milliseconds.

For Time values, duration must be one of: hours, minutes, seconds, or milliseconds.

If either argument is null, the result is null.

9.8.8 Now

Signature:

Now() DateTime

Description:

The Now operator returns the date and time of the start timestamp associated with the evaluation

request. Now is defined in this way for two reasons:

1. The operation will always return the same value within any given evaluation, ensuring

that the result of an expression containing Now will always return the same result.

2. The operation will return the timestamp associated with the evaluation request, allowing

the evaluation to be performed with the same timezone information as the data delivered

with the evaluation request.

9.8.9 Same As

Signature:

same precision as(left DateTime, right DateTime) Boolean

same precision as(left Time, right Time) Boolean

Description:

The same-precision-as operator compares two date/time values to the specified precision for

equality. Individual component values are compared starting from the year component down to

the specified precision. If all values are specified and have the same value for each component,

then the result is true. If a compared component is specified in both dates, but the values are not

the same, then the result is false. Otherwise the result is null, as there is not enough information

to make a determination.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 207
© 2014-2017 Health Level Seven International. All rights reserved

For DateTime values, precision must be one of: year, month, week, day, hour, minute, second, or

millisecond.

For Time values, precision must be one of: hour, minute, second, or millisecond.

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

As with all date/time calculations, comparisons are performed respecting the timezone offset.

If either or both arguments are null, the result is null.

9.8.10 Same Or After

Signature:

same precision or after(left DateTime, right DateTime) Boolean

same precision or after(left Time, right Time) Boolean

Description:

The same-precision-or after operator compares two date/time values to the specified precision to

determine whether the first argument is the same or after the second argument.

For DateTime values, precision must be one of: year, month, week, day, hour, minute, second, or

millisecond.

For Time values, precision must be one of: hour, minute, second, or millisecond.

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

As with all date/time calculations, comparisons are performed respecting the timezone offset.

If either or both arguments are null, the result is null.

9.8.11 Same Or Before

Signature:

same precision or before(left DateTime, right DateTime) Boolean

same precision or before(left DateTime, right DateTime) Boolean

Description:

The same-precision-or before operator compares two date/time values to the specified precision

to determine whether the first argument is the same or before the second argument.

For DateTime values, precision must be one of: year, month, week, day, hour, minute, second, or

millisecond.

For Time values, precision must be one of: hour, minute, second, or millisecond.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 208
© 2014-2017 Health Level Seven International. All rights reserved

For comparisons involving date/time or time values with imprecision, note that the result of the

comparison may be null, depending on whether the values involved are specified to the level of

precision used for the comparison.

As with all date/time calculations, comparisons are performed respecting the timezone offset.

If either or both arguments are null, the result is null.

9.8.12 Subtract

Signature:

-(left DateTime, right Quantity) DateTime
-(left Time, right Quantity) Time

Description:

The subtract (-) operator returns the value of the given date/time, decremented by the time-

valued quantity, respecting variable length periods for calendar years and months.

For DateTime values, the quantity unit must be one of: years, months, weeks, days, hours, minutes,

seconds, or milliseconds.

For Time values, the quantity unit must be one of: hours, minutes, seconds, or milliseconds.

The operation is performed by converting the time-based quantity to the highest specified

granularity in the date/time value (truncating any resulting decimal portion) and then subtracting

it from the date/time value. For example, the following subtraction:

DateTime(2014) - 24 months

This example results in the value DateTime(2012) even though the date/time value is not specified

to the level of precision of the time-valued quantity.

Note also that this means that if decimals appear in the time-valued quantities, the fractional

component will be ignored.

If either argument is null, the result is null.

9.8.13 Time

Signature:

Time(hour Integer) Time
Time(hour Integer, minute Integer) Time
Time(hour Integer, minute Integer, second Integer) Time
Time(hour Integer, minute Integer, second Integer, millisecond Integer) Time
Time(hour Integer, minute Integer, second Integer, millisecond Integer,
 timezoneOffset Decimal) Time

Description:

The Time operator constructs a time value from the given components.

At least one component other than timezoneOffset must be specified, and no component may be

specified at a precision below an unspecified precision. For example, minute may be null, but if it

is, second, and millisecond must all be null as well.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 209
© 2014-2017 Health Level Seven International. All rights reserved

If timezoneOffset is not specified, it is defaulted to the timezone offset of the evaluation request.

9.8.14 TimeOfDay

Signature:

TimeOfDay() Time

Description:

The TimeOfDay operator returns the time of day of the start timestamp associated with the

evaluation request. See the Now operator for more information on the rationale for defining the

TimeOfDay operator in this way.

9.8.15 Today

Signature:

Today() DateTime

Description:

The Today operator returns the date (with no time component) of the start timestamp associated

with the evaluation request. See the Now operator for more information on the rationale for

defining the Today operator in this way.

9.9 Interval Operators

9.9.1 After

Signature:

after precision (left Interval<T>, right Interval<T>) Boolean

after precision (left T, right Interval<T>) Boolean

after precision (left Interval<T>, right T) Boolean

Description:

The after operator for intervals returns true if the first interval starts after the second one ends.

In other words, if the starting point of the first interval is greater than the ending point of the

second interval.

For the point-interval overload, the operator returns true if the given point is greater than the end

of the interval.

For the interval-point overload, the operator returns true if the given interval starts after the given

point.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 210
© 2014-2017 Health Level Seven International. All rights reserved

9.9.2 Before

Signature:

before precision (left Interval<T>, right Interval<T>) Boolean

before precision (left T, right Interval<T>) Boolean

before precision (left interval<T>, right T) Boolean

Description:

The before operator for intervals returns true if the first interval ends before the second one

starts. In other words, if the ending point of the first interval is less than the starting point of the

second interval.

For the point-interval overload, the operator returns true if the given point is less than the start of

the interval.

For the interval-point overload, the operator returns true if the given interval ends before the

given point.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

9.9.3 Collapse

Signature:

collapse(argument List<Interval<T>>) List<Interval<T>>

Description:

The collapse operator returns the unique set of intervals that completely covers the ranges

present in the given list of intervals.

If the list of intervals is empty, the result is empty. If the list of intervals contains a single

interval, the result is a list with that interval. If the list of intervals contains nulls, they will be

excluded from the resulting list.

If the argument is null, the result is null.

9.9.4 Contains

Signature:

contains precision (argument Interval<T>, point T) Boolean

Description:

The contains operator for intervals returns true if the given point is greater than or equal to the

starting point of the interval, and less than or equal to the ending point of the interval. For open

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 211
© 2014-2017 Health Level Seven International. All rights reserved

interval boundaries, exclusive comparison operators are used. For closed interval boundaries, if

the interval boundary is null, the result of the boundary comparison is considered true.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

9.9.5 End

Signature:

end of(argument Interval<T>) T

Description:

The End operator returns the ending point of an interval.

If the high boundary of the interval is open, this operator returns the predecessor of the high

value of the interval. Note that if the high value of the interval is null, the result is null.

If the high boundary of the interval is closed and the high value of the interval is not null, this

operator returns the high value of the interval. Otherwise, the result is the maximum value of the

point type of the interval.

If the argument is null, the result is null.

9.9.6 Ends

Signature:

ends precision (left Interval<T>, right Interval<T>) Boolean

Description:

The ends operator returns true if the first interval ends the second. More precisely, if the starting

point of the first interval is greater than or equal to the starting point of the second, and the

ending point of the first interval is equal to the ending point of the second.

This operator uses the semantics described in the start and end operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

9.9.7 Equal

Signature:

=(left Interval<T>, right Interval<T>) Boolean

Description:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 212
© 2014-2017 Health Level Seven International. All rights reserved

The equal (=) operator for intervals returns true if and only if the intervals are over the same

point type, and they have the same value for the starting and ending points of the intervals as

determined by the Start and End operators.

If either argument is null, the result is null.

9.9.8 Equivalent

Signature:

~(left Interval<T>, right Interval<T>) Boolean

Description:

The ~ operator for intervals returns true if and only if the intervals are over the same point type,

and the starting and ending points of the intervals as determined by the Start and End operators

are equivalent.

9.9.9 Except

Signature:

except(left Interval<T>, right Interval<T>) Interval<T>

Description:

The except operator for intervals returns the set difference of two intervals. More precisely, this

operator returns the portion of the first interval that does not overlap with the second. Note that to

avoid returning an improper interval, if the second argument is properly contained within the first

and does not start or end it, this operator returns null.

If either argument is null, the result is null.

9.9.10 In

Signature:

in precision (point T, argument Interval<T>) Boolean

Description:

The in operator for intervals returns true if the given point is greater than or equal to the starting

point of the interval, and less than or equal to the ending point of the interval. For open interval

boundaries, exclusive comparison operators are used. For closed interval boundaries, if the

interval boundary is null, the result of the boundary comparison is considered true.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

9.9.11 Includes

Signature:

includes precision (left Interval<T>, right Interval<T>) Boolean

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 213
© 2014-2017 Health Level Seven International. All rights reserved

Description:

The includes operator for intervals returns true if the first interval completely includes the

second. More precisely, if the starting point of the first interval is less than or equal to the starting

point of the second interval, and the ending point of the first interval is greater than or equal to

the ending point of the second interval.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

9.9.12 Included In

Signature:

included in precision (left Interval<T>, right Interval<T>) Boolean

Description:

The included in operator for intervals returns true if the first interval is completely included in

the second. More precisely, if the starting point of the first interval is greater than or equal to the

starting point of the second interval, and the ending point of the first interval is less than or equal

to the ending point of the second interval.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

Note that during is a synonym for included in and may be used to invoke the same operation

whever included in may appear.

9.9.13 Intersect

Signature:

intersect(left Interval<T>, right Interval<T>) Boolean

Description:

The intersect operator for intervals returns the intersection of two intervals. More precisely, the

operator returns the interval that defines the overlapping portion of both arguments. If the

arguments do not overlap, this operator returns null.

If either argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 214
© 2014-2017 Health Level Seven International. All rights reserved

9.9.14 Meets

Signature:

meets precision (left Interval<T>, right Interval<T>) Boolean

meets before precision (left Interval<T>, right Interval<T>) Boolean

meets after precision (left Interval<T>, right Interval<T>) Boolean

Description:

The meets operator returns true if the first interval ends immediately before the second interval

starts, or if the first interval starts immediately after the second interval ends. In other words, if

the ending point of the first interval is equal to the predecessor of the starting point of the second,

or if the starting point of the first interval is equal to the successor of the ending point of the

second.

The meets before operator returns true if the first interval ends immediately before the second

interval starts, while the meets after operator returns true if the first interval starts immediately

after the second interval ends.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

9.9.15 Not Equal

Signature:

!=(left Interval<T>, right Interval<T>) : Boolean

Description:

The not equal (!=) operator for intervals returns true if its arguments are not the same value.

The not equal operator is a shorthand for invocation of logical negation (not) of the equal

operator.

9.9.16 Not Equivalent

Signature:

!~(left Interval<T>, right Interval<T>) : Boolean

Description:

The not equivalent (!~) operator for intervals returns true if its arguments are not equivalent.

The not equivalent operator is a shorthand for invocation of logical negation (not) of the

equivalent operator.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 215
© 2014-2017 Health Level Seven International. All rights reserved

9.9.17 On Or After

Signature:

on or after precision (left Interval<T>, right Interval<T>) Boolean

on or after precision (left T, right Interval<T>) Boolean

on or after precision (left Interval<T>, right T) Boolean

Description:

The on or after operator for intervals returns true if the first interval starts on or after the second

one ends. In other words, if the starting point of the first interval is greater than or equal to the

ending point of the second interval.

For the point-interval overload, the operator returns true if the given point is greater than or

equal to the end of the interval.

For the interval-point overload, the operator returns true if the given interval starts on or after the

given point.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

Note that this operator can be invoked using either the on or after or the after or on syntax.

9.9.18 On Or Before

Signature:

on or before precision (left Interval<T>, right Interval<T>) Boolean

on or before precision (left T, right Interval<T>) Boolean

on or before precision (left interval<T>, right T) Boolean

Description:

The on or before operator for intervals returns true if the first interval ends on or before the

second one starts. In other words, if the ending point of the first interval is less than or equal to

the starting point of the second interval.

For the point-interval overload, the operator returns true if the given point is less than or equal to

the start of the interval.

For the interval-point overload, the operator returns true if the given interval ends on or before

the given point.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 216
© 2014-2017 Health Level Seven International. All rights reserved

If either argument is null, the result is null.

Note that this operator can be invoked using either the on or before or the before or on syntax.

9.9.19 Overlaps

Signature:

overlaps precision (left Interval<T>, right Interval<T>) Boolean

overlaps before precision (left Interval<T>, right Interval<T>) Boolean

overlaps after precision (left Interval<T>, right Interval<T>) Boolean

Description:

The overlaps operator returns true if the first interval overlaps the second. More precisely, if the

ending point of the first interval is greater than or equal to the starting point of the second

interval, and the starting point of the first interval is less than or equal to the ending point of the

second interval.

The operator overlaps before returns true if the first interval overlaps the second and starts

before it, while the overlaps after operator returns true if the first interval overlaps the second

and ends after it.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

9.9.20 Point From

Signature:

point from(argument Interval<T>) : T

Description:

The point from operator extracts the single point from a unit interval. If the argument is not a unit

interval, a run-time error is thrown.

If the argument is null, the result is null.

9.9.21 Properly Includes

Signature:

properly includes precision (left Interval<T>, right Interval<T>) Boolean

Description:

The properly includes operator for intervals returns true if the first interval completely includes

the second and the first interval is strictly larger than the second. More precisely, if the starting

point of the first interval is less than or equal to the starting point of the second interval, and the

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 217
© 2014-2017 Health Level Seven International. All rights reserved

ending point of the first interval is greater than or equal to the ending point of the second interval,

and they are not the same interval.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

9.9.22 Properly Included In

Signature:

properly included in precision (left Interval<T>, right Interval<T>) Boolean

Description:

The properly included in operator for intervals returns true if the first interval is completely

included in the second and the first interval is strictly smaller than the second. More precisely, if

the starting point of the first interval is greater than or equal to the starting point of the second

interval, and the ending point of the first interval is less than or equal to the ending point of the

second interval, and they are not the same interval.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

Note that during is a synonym for included in.

9.9.23 Start

Signature:

start of(argument Interval<T>) T

Description:

The Start operator returns the starting point of an interval.

If the low boundary of the interval is open, this operator returns the successor of the low value of

the interval. Note that if the low value of the interval is null, the result is null.

If the low boundary of the interval is closed and the low value of the interval is not null, this

operator returns the low value of the interval. Otherwise, the result is the minimum value of the

point type of the interval.

If the argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 218
© 2014-2017 Health Level Seven International. All rights reserved

9.9.24 Starts

Signature:

starts precision (left Interval<T>, right Interval<T>) Boolean

Description:

The starts operator returns true if the first interval starts the second. More precisely, if the

starting point of the first is equal to the starting point of the second interval and the ending point

of the first interval is less than or equal to the ending point of the second interval.

This operator uses the semantics described in the Start and End operators to determine interval

boundaries.

If precision is specified and the point type is a date/time type, comparisons used in the operation

are performed at the specified precision.

If either argument is null, the result is null.

9.9.25 Union

Signature:

union(left Interval<T>, right Interval<T>) Interval<T>

Description:

The union operator for intervals returns the union of the intervals. More precisely, the operator

returns the interval that starts at the earliest starting point in either argument, and ends at the

latest starting point in either argument. If the arguments do not overlap or meet, this operator

returns null.

If either argument is null, the result is null.

9.9.26 Width

Signature:

width of(argument Interval<T>) T

Description:

The width operator returns the width of an interval. The result of this operator is equivalent to

invoking: (start of argument – end of argument) + point-size.

Note that because CQL defines duration and difference operations for date/time and time valued

intervals, width is not defined for intervals of these types.

If the argument is null, the result is null.

9.10 List Operators

9.10.1 Contains

Signature:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 219
© 2014-2017 Health Level Seven International. All rights reserved

contains(argument List<T>, element T) Boolean

Description:

The contains operator for lists returns true if the given element is in the list.

This operator uses the notion of equivalence to determine whether or not the element being

searched for is equivalent to any element in the list. In particular this means that if the list

contains a null, and the element being searched for is null, the result will be true.

If the list argument is null, the result is false.

9.10.2 Distinct

Signature:

distinct(argument List<T>) List<T>

Description:

The distinct operator returns the given list with duplicates eliminated.

This operator uses the notion of equivalence to determine whether two elements in the list are the

same for the purposes of duplicate elimination. In particular this means that if the list contains

multiple null elements, the result will only contain one null element.

If the argument is null, the result is null.

9.10.3 Equal

Signature:

=(left List<T>, right List<T>) Boolean

Description:

The equal (=) operator for lists returns true if and only if the lists have the same element type,

and have the same elements by value, in the same order.

If either argument is null, or contains null elements, the result is null.

9.10.4 Equivalent

Signature:

~(left List<T>, right List<T>) Boolean

Description:

The ~ operator for lists returns true if and only if the lists contain elements of the same type,

have the same number of elements, and for each element in the lists, in order, the elements are

equivalent.

9.10.5 Except

Signature:

except(left List<T>, right List<T>) List<T>

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 220
© 2014-2017 Health Level Seven International. All rights reserved

Description:

The except operator returns the set difference of two lists. More precisely, the operator returns a

list with the elements that appear in the first operand that do not appear in the second operand.

This operator uses the notion of equivalence to determine whether two elements are the same for

the purposes of computing the difference.

If the left argument is null, the result is null. else if the right argument is null, the result is the

left argument.

9.10.6 Exists

Signature:

exists(argument List<T>) Boolean

Description:

The exists operator returns true if the list contains any elements, including null elements.

If the argument is null, the result is false.

9.10.7 Flatten

Signature:

flatten(argument List<List<T>>) List<T>

Description:

The flatten operator flattens a list of lists into a single list.

If the argument is null, the result is null.

9.10.8 First

Signature:

First(argument List<T>) T

Description:

The First operator returns the first element in a list. The operator is equivalent to invoking the

indexer with an index of 0.

If the argument is null, the result is null.

9.10.9 In

Signature:

in(element T, argument List<T>) Boolean

Description:

The in operator for lists returns true if the given element is in the given list.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 221
© 2014-2017 Health Level Seven International. All rights reserved

This operator uses the notion of equivalence to determine whether or not the element being

searched for is equivalent to any element in the list. In particular this means that if the list

contains a null, and the element being searched for is null, the result will be true.

If the left argument is null, the result is null. If the right argument is null, the result is false.

9.10.10 Includes

Signature:

includes(left List<T>, right List<T>) Boolean

Description:

The includes operator for lists returns true if the first list contains every element of the second

list.

This operator uses the notion of equivalence to determine whether or not two elements are the

same.

If the left argument is null, the result is false, else if the right argument is null, the result is true.

Note that the order of elements does not matter for the purposes of determining inclusion.

9.10.11 Included In

Signature:

included in(left List<T>, right list<T>) Boolean

Description:

The included in operator for lists returns true if every element of the first list is in the second

list.

This operator uses the notion of equivalence to determine whether or not two elements are the

same.

If the left argument is null, the result is true, else if the right argument is null, the result is false.

Note that the order of elements does not matter for the purposes of determining inclusion.

9.10.12 Indexer

Signature:

[](argument List<T>, index Integer) T

Description:

The indexer ([]) operator returns the element at the indexth position in a list.

Indexes in lists are defined to be 0-based.

If the index is less than 0, or greater than the number of elements in the list, the result is null.

If either argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 222
© 2014-2017 Health Level Seven International. All rights reserved

9.10.13 IndexOf

Signature:

IndexOf(argument List<T>, element T) Integer

Description:

The IndexOf operator returns the 0-based index of the given element in the given source list.

The operator uses the notion of equivalence to determine the index. The search is linear, and

returns the index of the first element that is equivalent to the element being searched for.

If the list is empty, or no element is found, the result is -1.

If the list argument is null, the result is null.

9.10.14 Intersect

Signature:

intersect(left List<T>, right List<T>) List<T>

Description:

The intersect operator for lists returns the intersection of two lists. More precisely, the operator

returns a list containing only the elements that appear in both lists.

This operator uses the notion of equivalence to determine whether or not two elements are the

same.

If either argument is null, the result is null.

9.10.15 Last

Signature:

Last(argument List<T>) T

Description:

The Last operator returns the last element in a list. In a list of length N, the operator is equivalent

to invoking the indexer with an index of N - 1.

If the argument is null, the result is null.

9.10.16 Length

Signature:

Length(argument List<T>) Integer

Description:

The Length operator returns the number of elements in a list.

If the argument is null, the result is 0.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 223
© 2014-2017 Health Level Seven International. All rights reserved

9.10.17 Not Equal

Signature:

!=(left List<T>, right List<T>) Boolean

Description:

The not equal (!=) operator for lists returns true if its arguments are not the same value.

The not equal operator is a shorthand for invocation of logical negation (not) of the equal

operator.

9.10.18 Not Equivalent

Signature:

!~(left List<T>, right List<T>) Boolean

Description:

The not equivalent (!~) operator for lists returns true if its arguments are not equivalent.

The not equivalent operator is a shorthand for invocation of logical negation (not) of the

equivalent operator.

9.10.19 Properly Includes

Signature:

properly includes(left List<T>, right List<T>) Boolean

Description:

The properly includes operator for lists returns true if the first list contains every element of the

second list, and the first list is strictly larger than the second list.

This operator uses the notion of equivalence to determine whether or not two elements are the

same.

If the left argument is null, the result is false, else if the right argument is null, the result is true

if the left argument is not empty.

Note that the order of elements does not matter for the purposes of determining inclusion.

9.10.20 Properly Included In

Signature:

properly included in(left List<T>, right list<T>) Boolean

Description:

The properly included in operator for lists returns true if every element of the first list is in the

second list and the first list is strictly smaller than the second list.

This operator uses the notion of equivalence to determine whether or not two elements are the

same.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 224
© 2014-2017 Health Level Seven International. All rights reserved

If the left argument is null, the result is true if the right argument is not empty. Otherwise, if the

right argument is null, the result is false.

Note that the order of elements does not matter for the purposes of determining inclusion.

9.10.21 Singleton From

Signature:

singleton from(argument List<T>) T

Description:

The singleton from operator extracts a single element from the source list. If the source list is

empty, the result is null. If the source list contains one element, that element is returned. If the

list contains more than one element, a run-time error is thrown.

If the source list is null, the result is null.

9.10.22 Skip

Signature:

Skip(argument List<T>, number Integer) List<T>

Description:

The Skip operator returns the elements in the list, skipping the first number elements. If the list has

less number elements, the result is empty.

If the source list is null, the result is null.

If the number of elements is null, the result is the entire list, no elements are skipped.

If the number of elements is less than zero, the result is an empty list.

9.10.23 Tail

Signature:

Tail(argument List<T>) List<T>

Description:

The Tail operator returns all but the first element from the given list. If the list is empty, the

result is empty.

If the source list is null, the result is null.

9.10.24 Take

Signature:

Take(argument List<T>, number Integer) List<T>

Description:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 225
© 2014-2017 Health Level Seven International. All rights reserved

The Take operator returns the first number elements from the given list. If the list has less than

number elements, the result only contains the elements in the list.

If the source list is null, the result is null.

If number is null, or 0 or less, the result is an empty list.

9.10.25 Union

Signature:

union(left List<T>, right List<T>) List<T>

Description:

The union operator for lists returns a list with all elements from both arguments. Note that

duplicates are eliminated during this process; if an element appears in both sources, that element

will only appear once in the resulting list.

If either argument is null, the result is null.

Note that the union operator can also be invoked with the symbolic operator (|).

9.11 Aggregate Functions

9.11.1 AllTrue

Signature:

AllTrue(argument List<Boolean>) Boolean

Description:

The AllTrue operator returns true if all the non-null elements in the source are true.

If the source contains no non-null elements, true is returned.

If the source is null, the result is true.

9.11.2 AnyTrue

Signature:

AnyTrue(argument List<Boolean>) Boolean

Description:

The AnyTrue operator returns true if any non-null element in the source is true.

If the source contains no non-null elements, false is returned.

If the source is null, the result is false.

9.11.3 Avg

Signature:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 226
© 2014-2017 Health Level Seven International. All rights reserved

Avg(argument List<Decimal>) Decimal
Avg(argument List<Quantity>) Quantity

Description:

The Avg operator returns the average of the non-null elements in the source.

If the source contains no non-null elements, null is returned.

If the source is null, the result is null.

9.11.4 Count

Signature:

Count(argument List<T>) Integer

Description:

The Count operator returns the number of non-null elements in the source. If the list contains no

non-null elements, the result is 0. If the list is null, the result is 0.

9.11.5 Max

Signature:

Max(argument List<Integer>) Integer
Max(argument List<Decimal>) Decimal
Max(argument List<Quantity>) Quantity
Max(argument List<DateTime>) DateTime
Max(argument List<Time>) Time
Max(argument List<String>) String

Description:

The Max operator returns the maximum element in the source. Comparison semantics are defined

by the comparison operators for the type of value being aggregated.

If the source contains no non-null elements, null is returned.

If the source is null, the result is null.

9.11.6 Min

Signature:

Min(argument List<Integer>) Integer
Min(argument List<Decimal>) Decimal
Min(argument List<Quantity>) Quantity
Min(argument List<DateTime>) DateTime
Min(argument List<Time>) Time
Min(argument List<String>) String

Description:

The Min operator returns the minimum element in the source. Comparison semantics are defined

by the comparison operators for the type of value being aggregated.

If the source contains no non-null elements, null is returned.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 227
© 2014-2017 Health Level Seven International. All rights reserved

If the source is null, the result is null.

9.11.7 Median

Signature:

Median(argument List<Decimal>) Decimal
Median(argument List<Quantity>) Quantity

Description:

The Median operator returns the median of the elements in source.

If the source contains no non-null elements, null is returned.

If the source is null, the result is null.

9.11.8 Mode

Signature:

Mode(argument List<T>) T

Description:

The Mode operator returns the statistical mode of the elements in source.

If the source contains no non-null elements, null is returned.

If the source is null, the result is null.

9.11.9 Population StdDev

Signature:

PopulationStdDev(argument List<Decimal>) Decimal
PopulationStdDev(argument List<Quantity>) Quantity

Description:

The PopulationStdDev operator returns the statistical standard deviation of the elements in source.

If the source contains no non-null elements, null is returned.

If the source is null, the result is null.

9.11.10 Population Variance

Signature:

PopulationVariance(argument List<Decimal>) Decimal
PopulationVariance(argument List<Quantity>) Quantity

Description:

The PopulationVariance operator returns the statistical population variance of the elements in

source.

If the source contains no non-null elements, null is returned.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 228
© 2014-2017 Health Level Seven International. All rights reserved

If the source is null, the result is null.

9.11.11 StdDev

Signature:

StdDev(argument List<Decimal>) Decimal
StdDev(argument List<Quantity>) Quantity

Description:

The StdDev operator returns the statistical standard deviation of the elements in source.

If the source contains no non-null elements, null is returned.

If the list is null, the result is null.

9.11.12 Sum

Signature:

Sum(argument List<Integer>) Integer
Sum(argument List<Decimal>) Decimal
Sum(argument List<Quantity>) Quantity

Description:

The Sum operator returns the sum of non-null elements in the source.

If the source contains no non-null elements, null is returned.

If the list is null, the result is null.

9.11.13 Variance

Signature:

Variance(argument List<Decimal>) Decimal
Variance(argument List<Quantity>) Quantity

Description:

The Variance operator returns the statistical variance of the elements in source.

If the source contains no non-null elements, null is returned.

If the source is null, the result is null.

9.12 Clinical Operators

9.12.1 Age

Signature:

AgeInYears() Integer
AgeInMonths() Integer
AgeInWeeks() Integer
AgeInDays() Integer
AgeInHours() Integer

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 229
© 2014-2017 Health Level Seven International. All rights reserved

AgeInMinutes() Integer
AgeInSeconds() Integer

Description:

The Age operators calculate the age of the patient as of now in the precision named in the

operator.

If the patient’s birthdate is null, the result is null.

The Age operators are defined in terms of a DateTime duration calculation. This means that if the

age of the patient is not specified to the level of precision corresponding to the operator being

invoked, the result will be an uncertainty over the range of possible values, potentially causing

some comparisons to return null.

9.12.2 AgeAt

Signature:

AgeInYearsAt(asOf DateTime) Integer
AgeInMonthsAt(asOf DateTime) Integer
AgeInWeeksAt(asOf DateTime) Integer
AgeInDaysAt(asOf DateTime) Integer
AgeInHoursAt(asOf DateTime) Integer
AgeInMinutesAt(asOf DateTime) Integer
AgeInSecondsAt(asOf DateTime) Integer

Description:

The AgeAt operators calculate the age of the patient as of the given date in the precision named in

the operator.

If the patient’s birthdate is null, or the asOf argument is null, the result is null.

The AgeAt operators are defined in terms of a DateTime duration calculation. This means that if the

age of the patient or the given asOf value are not specified to the level of precision corresponding

to the operator being invoked, the will be an uncertainty over the range of possible values,

potentially causing some comparisons to return null.

9.12.3 CalculateAge

Signature:

CalculateAgeInYears(birthDate DateTime) Integer
CalculateAgeInMonths(birthDate DateTime) Integer
CalculateAgeInWeeks(birthDate DateTime) Integer
CalculateAgeInDays(birthDate DateTime) Integer
CalculateAgeInHours(birthDate DateTime) Integer
CalculateAgeInMinutes(birthDate DateTime) Integer
CalculateAgeInSeconds(birthDate DateTime) Integer

Description:

The CalculateAge operators calculate the age of a person born on the given birthdate as of now in

the precision named in the operator.

If the birthdate is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 230
© 2014-2017 Health Level Seven International. All rights reserved

The CalculateAge operators are defined in terms of a DateTime duration calculation. This means

that if the given birthDate is not specified to the level of precision corresponding to the operator

being invoked, the result will be an uncertainty over the range of possible values, potentially

causing some comparisons to return null.

9.12.4 CalculateAgeAt

Signature:

CalculateAgeInYearsAt(birthDate DateTime, asOf DateTime) Integer
CalculateAgeInMonthsAt(birthDate DateTime, asOf DateTime) Integer
CalculateAgeInWeeksAt(birthDate DateTime, asOf DateTime) Integer
CalculateAgeInDaysAt(birthDate DateTime, asOf DateTime) Integer
CalculateAgeInHoursAt(birthDate DateTime, asOf DateTime) Integer
CalculateAgeInMinutesAt(birthDate DateTime, asOf DateTime) Integer
CalculateAgeInSecondsAt(birthDate DateTime, asOf DateTime) Integer

Description:

The CalculateAgeAt operators calculate the age of a person born on the given birthdate as of the

given date in the precision named in the operator.

If the birthDate is null or the asOf argument is null, the result is null.

The CalculateAgeAt operators are defined in terms of a DateTime duration calculation. This means

that if the given birthDate or asOf are not specified to the level of precision corresponding to the

operator being invoked, the result will be an uncertainty over the range of possible values,

potentially causing some comparisons to return null.

9.12.5 Equal

Signature:

=(left Code, right Code) Boolean
=(left Concept, right Concept) Boolean

Description:

The equal (=) operator for Codes and Concepts uses tuple equality semantics. This means that the

operator will return true if and only if the values for each element by name are equal.

If either argument is null, or contains any null components, the result is null.

9.12.6 Equivalent

Signature:

~(left Code, right Code) Boolean

Description:

The ~ operator for Code values returns true if the code, system, and version elements are

equivalent. The display element is ignored for the purposes of determining Code equivalence.

For Concept values, equivalence is defined as a non-empty intersection of the codes in each

Concept. The display element is ignored for the purposes of determining Concept equivalence.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 231
© 2014-2017 Health Level Seven International. All rights reserved

Note that this operator will always return true or false, even if either or both of its arguments are

null, or contain null components.

Note carefully that this notion of equivalence is not the same as the notion of equivalence used in

terminology: “these codes represent the same concept.” CQL specifically avoids defining

terminological equivalence. The notion of equivalence defined here is used to provide consistent

and intuitive semantics when dealing with missing information in membership contexts.

9.12.7 In (Codesystem)

Signature:

in(code String, codesystem CodeSystemRef) Boolean
in(code Code, codesystem CodeSystemRef) Boolean
in(concept Concept, codesystem CodeSystemRef) Boolean

Description:

The in (Codesystem) operators determine whether or not a given code is in a particular

codesystem. Note that these operators can only be invoked by referencing a defined codesystem.

For the String overload, if the given code system contains a code with an equivalent code

element, the result is true.

For the Code overload, if the given code system contains an equivalent code, the result is true.

For the Concept overload, if the given code system contains a code equivalent to any code in the

given concept, the result is true.

If the code argument is null, the result is null.

9.12.8 In (Valueset)

Signature:

in(code String, valueset ValueSetRef) Boolean
in(code Code, valueset ValueSetRef) Boolean
in(concept Concept, valueset ValueSetRef) Boolean

Description:

The in (Valueset) operators determine whether or not a given code is in a particular valueset.

Note that these operators can only be invoked by referencing a defined valueset.

For the String overload, if the given valueset contains a code with an equivalent code element,

the result is true.

For the Code overload, if the given valueset contains an equivalent code, the result is true.

For the Concept overload, if the given valueset contains a code equivalent to any code in the

given concept, the result is true.

If the code argument is null, the result is null.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 232
© 2014-2017 Health Level Seven International. All rights reserved

9.13 Errors and Messaging

9.13.1 Message

Signature:

Message(source T, condition Boolean, code String, severity String, message String) T

Description:

The Message operator provides a run-time mechanism for returning messages, warnings, traces,

and errors to the calling environment.

The source operator is any type and the result of the operation is the input source; the operation

performs no modifications to input. This allows the message operation to appear at any point in

any expression of CQL.

The condition is used to determine whether the message is generated and returned to the calling

environment. If condition is true, the message is generated. Otherwise, the operation only returns

the results and performs no processing at all.

The code provides a coded representation of the error. Note that this is a token (like a string or

integer), not a terminology Code.

The severity determines what level of processing should occur for the message that is generated:

• Message – The operation produces an informational message that is expected to be made

available in some way to the calling environment.

• Warning – The operation produces a warning message that is expected to be made

conspicuously available to the calling environment, potentially to the end-user of the

logic.

• Trace – The operation produces an informational message that is expected to be made

available to a tracing mechanism such as a debug log in the calling environment. In

addition, some representation of the contents of the source parameter should be made

available to the tracing mechanism.

• Error – The operation produces a run-time error and return the message to the calling

environment. This is the only severity that stops evaluation. All other severities continue

evaluation of the expression.

If no severity is supplied, a default severity of Message is assumed.

The message is the content of the actual message that is sent to the calling environment.

Note that for Trace severity, the implementation should output the contents of the source

parameter as part of the trace message. Because the logic may be operating on patient

information, the utmost care should be taken to ensure that appropriate safeguards are in place to

avoid logging sensitive information. At a minimum, all PHI should be redacted from these trace

messages.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 233
© 2014-2017 Health Level Seven International. All rights reserved

10 APPENDIX C – REFERENCE IMPLEMENTATIONS

As part of the Clinical Quality Framework effort, reference implementations of a CQL-ELM

translator, a native ELM execution engine, and other CQL-related tools are in progress. This

appendix provides a brief overview of where to find more information on these reference

implementations.

10.1 CQL-ELM Translator Reference Implementation

The CQL-ELM Translator is a reference implementation for the translation of text-based CQL

library documents into an XML or JSON representation using the ELM. The implementation is

intended to be used in CQF pilots and eventually integrated into production authoring

environments for both Clinical Decision Support and Clinical Quality Measurement. The

implementation can also be used as the first step in a process to enable distribution, translation,

execution, and integration of CQL-based quality artifacts.

The CQL-ELM Translator is licensed under the open source Apache Version 2.0 license, and

available as part of the clinical_quality_language project on GitHub:

https://github.com/cqframework/clinical_quality_language.

For an overview of the project, along with current status, refer to the following document:

https://github.com/cqframework/clinical_quality_language/blob/master/Src/java/cql-to-

elm/OVERVIEW.md

10.2 CQL Execution Framework Reference Implementation

A reference implementation for executing CQL is currently under development. This reference

implementation is intended to be used in CQF pilots and eventually integrated into production

eCQM testing and certification tools.

The CQL execution framework is licensed under the open source Apache Version 2.0 license, and

available as part of the clinical_quality_language project on GitHub:

https://github.com/cqframework/clinical_quality_language.

For an overview of the project along with current status, refer to the following document:

https://github.com/cqframework/clinical_quality_language/blob/master/Src/coffeescript/cql-

execution/OVERVIEW.md

10.3 Other CQL-related Tools

Other CQL-related tools such as a graphical CQL grammar parsetree viewer, a ModelInfo

generator, and a CQL syntax highlighting plugin for Atom are also available.

These tools are licensed under the open source Apache Version 2.0 license and available on

GitHub:

• https://github.com/cqframework/clinical_quality_language

• https://github.com/cqframework/atom_cql_support

http://www.apache.org/licenses/LICENSE-2.0
https://github.com/cqframework/clinical_quality_language
https://github.com/cqframework/clinical_quality_language/blob/master/Src/java/cql-to-elm/OVERVIEW.md
https://github.com/cqframework/clinical_quality_language/blob/master/Src/java/cql-to-elm/OVERVIEW.md
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/cqframework/clinical_quality_language
https://github.com/cqframework/clinical_quality_language/blob/master/Src/coffeescript/cql-execution/OVERVIEW.md
https://github.com/cqframework/clinical_quality_language/blob/master/Src/coffeescript/cql-execution/OVERVIEW.md
https://atom.io/
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/cqframework/clinical_quality_language
https://github.com/cqframework/atom_cql_support

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 234
© 2014-2017 Health Level Seven International. All rights reserved

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 235
© 2014-2017 Health Level Seven International. All rights reserved

11 APPENDIX D – REFERENCES

1. Clinical Quality Framework Use Cases.

http://wiki.siframework.org/Clinical+Quality+Framework+Use+Cases

2. HL7 Version 3 Standard: Clinical Decision Support Knowledge Artifact Specification,

Release 1.2. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=337

3. HL7 Version 3 Standard: Representation of the Health Quality Measure Format

(eMeasure) DSTU, Release 2.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=97

4. HL7 Version 3 Implementation Guide: Quality Data Model (QDM)-based Health Quality

Measure Format (HQMF), Release 1 - US Realm.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=346

5. HL7 Domain Analysis Model: Harmonization of Health Quality Artifact Reasoning and

Expression Logic.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=359

6. HL7 Version 3 Standard: Decision Support Service, Release 2.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=12

7. HL7 Version 3 Implementation Guide: Decision Support Service, Release 1.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=334

8. Health Level Seven Arden Syntax for Medical Logic Systems, Version 2.10.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=372

9. HL7 Version 3 Standard: GELLO; A Common Expression Language, Release 2.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=5

10. HL7 Fast Healthcare Interoperability Resources Specification (FHIR), Release 1.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=343

11. ISO 8601:2004: Data elements and interchange formats -- Information Interchange --

Representation of dates and times.

http://www.iso.org/iso/catalogue_detail?csnumber=40874

12. Quality Data Model, Version 4.1.1.

http://www.healthit.gov/sites/default/files/qdm_4_1_1.pdf

13. Object Constraint Language, OMG Available Specification Version 2.4.

http://www.omg.org/spec/OCL/2.4/

14. Foundations of Databases. Abiteboul, Hull, Vianu, 1995

15. Temporal Data and The Relational Model. Date, Darwen, Lorentzos, 2003

16. Databases, Types, and the Relational Model, 3rd edition. Date, Darwen, 2007

17. Compilers: Principles, Techniques, and Tools. Aho, Sethi, Ullman, 1998

18. Unicode Standard Annex #44: Unicode Character Database

http://www.unicode.org/reports/tr44/

19. Common Terminology Services 2, Version 1.0. http://www.omg.org/spec/CTS2/1.0/

http://wiki.siframework.org/Clinical+Quality+Framework+Use+Cases
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=337
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=97
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=346
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=359
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=12
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=334
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=372
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=5
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=343
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.healthit.gov/sites/default/files/qdm_4_1_1.pdf
http://www.omg.org/spec/OCL/2.4/
http://www.unicode.org/reports/tr44/
http://www.omg.org/spec/CTS2/1.0/

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 236
© 2014-2017 Health Level Seven International. All rights reserved

12 APPENDIX E – ACRONYMS

Acronym Definition/Description

AHRQ Agency for Healthcare Research and Quality

ANTLR4 ANother Tool for Language Recognition (version 4)

CDA Clinical Document Architecture

CDS Clinical Decision Support

CDSC L3 Clinical Decision Support Consortium Level 3

CDS KAS Clinical Decision Support Knowledge Artifact Specification

CMS Centers for Medicare & Medicaid Services

CPT Current Procedural Terminology

CQL Clinical Quality Language

CQM Clinical Quality Measure

CREF Allscripts Common Rule Engine Format (CREF) specification

CTS2 Common Terminology Services 2

DAM Domain Analysis Model

DSTU Draft Standard for Trial Use

eCQI Electronic Clinical Quality Improvement

eCQM Electronic Clinical Quality Measure

EHR Electronic Health Record

ELM Expression Logical Model

EMR Electronic Medical Record

eRecs AHRQ Electronic Recommendations

FHIR Fast Healthcare Interoperability Resources

GEM Guidelines Element Model

HeD Health eDecisions

HIE Health Information Exchange

HIT Health Information Technology

HITECH Act Health Information Technology for Economic and Clinical Health Act

HIPAA Health Insurance Portability and Accountability Act

HITSP Health Information Technology Standards Panel

HL7 Health Level 7

HQMF Health Quality Measure Format

ICD-9-CM International Classification of Diseases, Ninth Revision

ICD-10 International Classification of Diseases, Tenth Revision

IHTSDO International Health Terminology Standards Development Organization

ISO International Organization for Standardization

LOINC Logical Observation Identifiers Names and Codes

MAT Measure Authoring Tool

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 237
© 2014-2017 Health Level Seven International. All rights reserved

NCQA National Committee for Quality Assurance

NQF National Quality Foundation

OID Object Identifier

ONC Office of the National Coordinator for Health Information Technology

PHR Personal Health Record

QDM Quality Data Model

QRDA Quality Reporting Document Architecture

QUICK Quality Improvement and Clinical Knowledge

RIM Reference Information Model

SI International System of Units

SNOMED-CT Systematized Nomenclature of Medicine – Clinical Terms

SQL Structured Query Language

UCUM Unified Code for Units of Measure

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

USHIK United States Health Information Knowledgebase

UTC Coordinated Universal Time

VSAC Value Set Authority Center

XMI XML Metadata Interchange

XML eXtended Markup Language

TABLE 12-A

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 238
© 2014-2017 Health Level Seven International. All rights reserved

13 APPENDIX F – GLOSSARY

canonical representation – As used within the CQL specification, this term means a

representation of information in terms of primitives. For example, CQL contains high-level

constructs such as timing phrases that are intended to allow natural language expression of timing

relationships. The canonical representation of these constructs involves equivalent expression in

terms of more primitive constructs targeted at implementation and integration applications.

clinical statement – Within the CQL specification, the term clinical statement is used to refer to

the representation of clinical information in terms of a specific data model. For example, an

instance of a FHIR Condition resource is a clinical statement asserting a condition for a subject in

some status. Clinical statements are the content that CQL reasons about.

ELM – Expression Logical Model is a UML specification for representing artifact logic

independent of syntax and special-purpose constructs introduced at the syntactic level. It is

intended to enable distribution and sharing of computable quality logic.

FHIR® – Fast Healthcare Interoperability Resources (hl7.org/fhir) – is a next generation

standards framework created by HL7. FHIR combines the best features of HL7’s Version 2,

Version 3 and CDA® product lines while leveraging the latest web standards and applying a tight

focus on implementability.

FHIR Profile – A FHIR Profile is a statement of use of one or more FHIR Resources. It may

include constraints on Resources and Data Types, Terminology Binding Statements and

Extension Definitions. See the FHIR documentation for more information.

nullological – A category of operations for dealing with missing information. The term is

actually due to Hugh Darwen, who introduced it in a paper to describe the behavior of operations

in edge cases (e.g. empty sets or strings of length zero) and given his long history of opposing the

use of “nulls” in relational systems, would probably not be pleased with the way the term has

been co-opted in this context.

quality vendor – A company or organization that provides commercially available health quality

services, such as distribution of quality-related knowledge artifacts, integration of quality

measurement and improvement functionality, or provision of health quality evaluation services.

query – Within CQL, the term query refers to a specific language construct that forms the basis

for expressing logic involving lists of clinical statements within an artifact. A query may use any

or all of various clauses to describe the types of operations to be performed, and returns a list of

values that can be used directly, or serve as the input to other queries.

retrieve – Within CQL, the term retrieve refers to a specific language construct used to access

clinical statements within an artifact.

shaping – Within CQL, the term shaping refers to the operation performed by the return clause

of a query, which allows the shape of the resulting values of the query to be described.

three-valued logic (3VL) – A logic system prevalent within SQL-based Database Management

Systems (DBMSs) that is defined using three values, TRUE, FALSE, and UNKNOWN, as

opposed to traditional boolean-valued logic systems that involve only two values, TRUE and

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 239
© 2014-2017 Health Level Seven International. All rights reserved

FALSE. The system is used as a mechanism for reasoning in the presence of missing information.

Within CQL, the three values are represented by the language keywords true, false, and null.

tuple – Within CQL, a tuple is the basic construct for representing structured values, with each

tuple value consisting of a set of tuple elements, each of which has a name and a value. Tuples in

CQL are analogous to records, or structs, in traditional programming languages, and rows in

database programming languages. They are used within CQL to represent class instances from

object-oriented data models, as well as XML or JSON instances.

type – Within CQL, the term type refers to a conceptual component of the language that defines a

set of values that are all of that same type. For example, Integer is a type and is defined as the set

of all integer values within a specific range, specifically the signed integers that can be

represented using two’s complement binary notation with a 32-bit word.

uncertainty – Conceptually, the notion that a value is present, but not precisely known. Formally

within CQL implementation contexts, uncertainty is represented using closed intervals to

describe the range of possible values.

value – Within CQL, the term value refers to a piece of data of some type. For example, the

value 5 is of type Integer. Values are immutable, meaning they do not change over time.

valueset – Within CQL, a valueset allows logic to reference externally defined value sets.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 240
© 2014-2017 Health Level Seven International. All rights reserved

14 APPENDIX G – FORMATTING CONVENTIONS

This guidance describes syntactic conventions for formatting statements and expressions

of Clinical Quality Language (CQL) that encourage consistency, readability,

maintainability, and reusability of the resulting CQL. Throughout the discussing, the

following simplified syntax element definitions are used. Formal definitions of these

elements can be found in the CQL Specification.

• Whitespace - Whitespace defines the separation between all tokens in the

language (e.g. spaces, tabs, returns, etc.)

• Comment - Comments are ignored by the language, allowing for descriptive text

to be included

• Literal - Literals allow basic values to be represented within the language

• Symbol - Symbols such as +, -, *, and /

• Keyword - Grammar-recognized keywords such as define and where

• Identifier - User-defined identifiers

14.1 Case-Related Conventions

CQL is a case-sensitive language, meaning that the grammar uses the case of letters

when comparing identifiers and keywords. For example, the keyword define must be

expressed with all lower case letters, Define is not recognized. This aspect of CQL

encourages consistency and reduces the potential for naming clashes with keywords in

the language.

This discussion defines the following terms to describe different approaches to casing:

• lowercase - All letters are lowercase

• camelCase - First letters of words are capitalized, except the first word, with no

whitespace characters allowed

• PascalCase - First letters of words are capitalized, including words not capitalized

in Title Case like "and" and "of", with no whitespace characters allowed

• Title Case - Standard title casing including spaces and tabs, but no other

whitespace characters allowed

14.1.1 CQL-Defined Casing

These casings are defined by the specification, so they are not conventions per se, but

are highlighted here for completeness.

Keywords within CQL are always lowercase.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 241
© 2014-2017 Health Level Seven International. All rights reserved

System library functions are always PascalCase.

System type names are always PascalCase.

14.2 Spacing Conventions

CQL treats all whitespace as a single token, meaning that it doesn't matter whether you

use spaces or tabs to separate keywords and other tokens, so long as you have some

whitespace as defined by the rules of the language. This allows authors to format their

expressions using whatever conventions are appropriate for their environment. While

this flexibility is beneficial in that it allows CQL to be used in a wide variety of settings, it

can also lead to inconsistent formatting, reducing readability. As such, these simple

conventions are recommended to ensure consistent formatting:

Use tabs to indent, rather than multiple spaces. The use of tabs reduces keystrokes and

simplifies maintenance of the resulting CQL.

Indent using a single tab for related content. This makes it visually clear where the

dependencies are in any given expression and helps to organize statements and clauses.

Always use a space after a comma. This helps to visually separate items in a list.

Never use a space before or after a period. The period in CQL is a qualifier, and adding

whitespace disconnects the content visually, implying a separation that is not present.

To help maintain readability of CQL, lines should fit reasonably within standard view

screens. Around 100 characters per line is a good rule of thumb.

14.3 Operators and Functions

CQL distinguishes between operators, which use symbols such as +, *, and and, and

functions, which use identifiers followed by parentheses to provide the arguments to the

function.

14.3.1 Operators

Operators are always keywords, and always lowercase.

Binary operators (operators with two arguments) are always infix.

Unary operators (operators with one argument) are always prefix.

Always use a space before and after operators.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 242
© 2014-2017 Health Level Seven International. All rights reserved

14.3.2 Functions

When defining a function, always use a PascalCase identifier.

Functions always use parentheses, even if the function has no arguments.

If the function has no arguments, do not put a space between the parentheses.

Never put a space between the function name and the argument list, or between the

opening and closing parentheses and the arguments.

Always use spaces after commas to separate arguments.

If necessary, an argument list can be continued across multiple lines, but keep the

opening parenthesis on the same line as the function identifier, and indent subsequent

lines one level.

When continuing an argument list, do not attempt to right-align indented content, as

this leads to unnecessary maintenance to preserve the alignment.

14.4 Literals

Literals in CQL allow for the expression of values of each of the system-defined types.

14.4.1 Quantities

For Quantities, always put a space between the numerical value and the unit:

45 'mg'
28 'mm[Hg]'

14.4.2 Intervals

Intervals can be expressed based on any type that supports ordered comparison

(Integer, Decimal, DateTime, Time, Quantity).

Intervals use standard mathematical notation to indicate whether the boundaries are

open or closed:

Interval[1, 5]
Interval(1, 9)
Interval[@2015-01-01T00:00:00.0Z, @2016-01-01T00:00:00.0Z)

Never put a space before or after the opening or closing boundary.

Always put a space after the comma.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 243
© 2014-2017 Health Level Seven International. All rights reserved

14.4.3 Lists and Tuples

Lists in CQL can contain elements of any type.

Always separate the contents of the list with a space to help visually distinguish the

braces from parentheses:

{ 1, 2, 3 }
Sum({ 1, 2, 3 })

Tuples in CQL contain named elements of any type.

Always separate the contents of the tuple with a space:

{ name: 'Patrick', birthDate: @2014-01-01 }

Do not put a space between the tuple element name and the value specifier (:), but

always put a space between the value specifier and the value.

The Tuple keyword is optional, but this means that the empty tuple has a special

construct:

{ } // empty list
{ : } // empty Tuple

14.5 Queries

The central expression construct of CQL is the query. The query construct in CQL is

clause-based:

<primary source> <alias>
 <with or without clauses>
 <where clause>
 <return clause>
 <sort clause>

In general, simple queries can fit on a single line:

["Encounter, Performed": "Inpatient"] Encounter where duration in days of Encounter.period >= 120

If a query, or a clause of a query, needs more than one line, continue the clauses

indented beneath the query or clause:

"Pharyngitis Encounters with Antibiotics" Pharyngitis
 with ["Laboratory Test, Performed": "Group A Streptococcus Test"] Test
 such that Test.result is not null
 and Test.startDateTime in Interval[Pharyngitis.startTime - 3 days,
Pharyngitis.stopDateTime + 3 days]

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 244
© 2014-2017 Health Level Seven International. All rights reserved

When a query needs multiple lines, each clause should start on a new line indented one

level.

14.6 Syntax Highlighting

Syntax highlighting is an important aspect of readability. In order to enable different

environments to provide consistent highlighting, the following syntactic categories are

defined for CQL:

• Symbols

• Keywords

• Operators

• Literals

o Numbers

o Strings

o Dates and Times

• Comments

• Identifiers

o Type Identifiers

o Variable Identifiers

o Function Identifiers

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 245
© 2014-2017 Health Level Seven International. All rights reserved

15 APPENDIX H – TIME INTERVAL CALCULATION EXAMPLES

To determine the length of time between two dates, CQL provides two different approaches,

duration the number of whole periods between two dates, and difference, the number of period

boundaries crossed between two dates.

The first approach, calculating the duration, determines the number of whole periods that occur

between the two dates. Conceptually, the calculation is performed by considering the two dates

on a timeline, and counting the number of whole periods that fit on that timeline between the two

dates. For example:

Date 1: 2012-03-10

Date 2: 2013-03-10

Duration In Years: years between Date1 and Date2

The Duration In Years expression gives one year, because an entire year has passed between the

two dates. Note that time is considered for the purposes of calculating the number of years:

DateTime 1: 2012-03-10 10:20:00

DateTime 2: 2013-03-10 09:20:00

Duration in Years: years between DateTime1 and DateTime2

This expression gives zero years, because the year has not passed until 10:20:00 on the day in the

following year. To calculate the number of years, ignoring the time, extract the date from the

date/time value:

DateTime 1: 2012-03-10 10:20:00

DateTime 2: 2013-03-10 09:20:00

Duration In Years: years between (date from DateTime1) and (date from DateTime2)

The second approach, calculating the difference, determines the number of boundaries crossed

between two dates. To illustrate the difference, consider the following example:

Date 1: 2012-12-31

Date 2: 2013-01-01

Duration In Years: years between Date1 and Date2

Difference In Years: difference in years between Date1 and Date2

The Duration In Years expression returns zero because a full year has not passed between the two

dates. However, the Difference In Years expression returns 1 because one year boundary was

crossed between the two dates.

15.1 Calculating Duration in Years

15.1.1 Definition

In CQL, a year is defined as the duration of any time interval which starts at a certain time of day

at a certain calendar date of the calendar year and ends at:

• The same time of day on the same calendar date of the next calendar year, if it exists

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 246
© 2014-2017 Health Level Seven International. All rights reserved

• The same time of day on the immediately following calendar date of the next calendar

year, if the same calendar date of the next calendar year does not exist.

Note: When in the next calendar year the same calendar date does not exist, the ISO states that

the ending calendar day has to be agreed upon. The above convention is used in CQL as a

resolution to this issue.

15.1.2 Examples

1. Month (date 2) < month (date 1): Duration (years) = year (date 2) - year (date 1) - 1

Example 1:
Date 1: 2012-03-10 22:05:09

Date 2: 2013-02-18 19:10:03

Duration = year (date 2) - year (date 1) - 1 = 2013 - 2012 - 1 = 0 years

2. Month (date 2) = month (date 1) and day (date 2) >= day (date 1)

Duration (years) = year (date 2) - year (date 1)

Example 2.a: day (date 1) = day (date 2)

Date 1: 2012-03-10 22:05:09

Date 2: 2013-03-10 22:05:09

Duration = year (date 2) - year (date 1) = 2013 - 2012 = 1 year

Note: Time of day is important in this calculation. If the time of day of Date 2 were less than the

time of day for Date 1, the duration of the time interval would be 0 years according to the

definition.

Example 2.b: day (date 2) > day (date 1)

Date 1: 2012-03-10 22:05:09

Date 2: 2013-03-20 04:01:30

Duration = year (date 2) - year (date 1) = 2013 - 2012 = 1 year

3. Month (date 2) = month (date 1) and day (date 2) < day (date 1)

Duration (years) = year (date 2) - year (date 1) - 1

Example 3.a:
Date 1: 2012-02-29

Date 2: 2014-02-28

Duration = year (date 2) - year (date 1) - 1 = 2014 - 2012 - 1 = 1 year

4. Month (date 2) > month (date 1)

Duration (years) = year (date 2) - year (date 1)

Example 4.a:
Date 1: 2012-03-10 11:16:02

Date 2: 2013-08-15 21:34:16

Duration = year (date 2) - year (date 1) = 2013 - 2012 - 1 year

Example 4.b:
Date 1: 2012-02-29 10:18:56

Date 2: 2014-03-01 19:02:34

Duration = year (date 2) - year (date 1) = 2014 - 2012 = 2 years

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 247
© 2014-2017 Health Level Seven International. All rights reserved

Note: Because there is no February 29 in 2014, the number of years can only change when the

date reaches March 1, the first date in 2014 that surpasses the month and day of date 1 (Feburary

29).

15.2 Calculating Duration in Months

15.2.1 Definition

A month in CQL is defines as the duration of any time interval which starts at a certain time of

day at a certain calendar day of the calendar month and ends at:

• The same time of day at the same calendar day of the ending calendar month, if it exists

• The same time of day at the immediately following calendar date of the ending calendar

month, if the same calendar date of the ending month in the ending year does not exist.

Notes: When in the next calendar year the same calendar date does not exist, the ISO states that

the ending calendar day has to be agreed upon. The above convention is used in CQL as a

resolution to this issue.

15.2.2 Examples

1. Day (date 2) >= day (date 1)

Duration (months) = (year (date 2) - year (date 1)) * 12 + (month (date 2) - month (date

1))

Example 1.a:
Date 1: 2012-03-01 14:05:45

Date 2: 2012-03-31 23:01:49

Duration = (year (date 2) - year (date 1)) * 12 + (month (date 2) - (month (date 1))

= (2012 - 2012) * 12 + (3 - 3) = 0 months

Example 1.b:
Date 1: 2012-03-10 22:05:09

Date 2: 2013-06-30 13:00:23

Duration = (year (date 2) - year (date 1)) * 12 + (month (date 2) - (month date 1))

= (2013 - 2012) * 12 + (6 - 3) = 12 + 3 = 15 months

2. Day (day 2) < day (date 1)

Duration (months) = (year (date 2) - year (date 1)) * 12 + (month (date 2) - month (date

1)) - 1

Example 2:
Date 1: 2012-03-10 22:05:09

Date 2: 2013-01-09 07:19:33

Duration = (year (date 2) - year (date 1)) * 12 + (month (date 2) - month (date 1)) - 1

= (2013 - 2012) * 12 + (1 - 3) - 1 = 12 - 2 - 1 = 9 months

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 248
© 2014-2017 Health Level Seven International. All rights reserved

15.3 Calculating Duration in Weeks

15.3.1 Definition

In CQL, a week is defined as a duration of any time interval which starts at a certain time of day

at a certain calendar day at a certain calendar week and ends at the same time of day at the same

calendar day of the ending calendar week. In other words, a complete week is always seven days

long.

15.3.2 Examples

1. Duration = [date 2 - date 1 (days)] / 7

Example 1:
Date 1: 2012-03-10 22:05:09

Date 2: 2012-03-20 07:19:33

Duration = [# days (month (date 1)) - day (date 1) + # days (month (date 1) + 1) + #days (month

(date 1) + 2) + ... + # days (month (date 2) - 1) + day (date 2)] / 7

= (20 - 10) / 7 = 10 / 7 = 1 week

15.4 Calculating Duration in Days

15.4.1 Definition

In CQL, a day is defined as a duration of any time interval which starts at a certain calendar day

and ends at the next calendar day (1 second to 23 hours, 59 minutes, and 59 seconds).

The duration in days between two dates will generally be given by subtracting the start calendar

date from the end calendar date, respecting the time of day between the two dates.

15.4.2 Examples

1. Time (date 2) < time (date 1)

Duration = [date 2 - date 1 (days)] - 1

Example 1:
Date 1: 2012-01-31 12:30:00

Date 2: 2012-02-01 09:00:00

Duration = 02-01 - 01-31 - 1 = 0 days

2. Time (date 2) >= time (date 1)

Duration = date 2 - date 1 (days)

Example 2:
Date 1: 2012-01-31 12:30:00

Date 2: 2012-02-01 14:00:00

Duration = 02-01 - 01-31 = 1 day

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 249
© 2014-2017 Health Level Seven International. All rights reserved

15.5 Calculating Duration in Hours

15.5.1 Definition

In CQL, an hour is defined as 60 minutes. The duration in hours between two dates is the number

of minutes between the two dates, divided by 60. The result is truncated to the unit.

15.5.2 Examples

1. Example 1:
Date 1: 2012-03-01 03:10:00

Date 2: 2012-03-01 05:09:00

Duration = 1 hour

2. Example 2:
Date 1: 2012-02-29 23:10:00

Date 2: 2012-03-01 00:10:00

Duration = 1 hour

3. Example 3:
Date 1: 2012-03-01 03:10

Date 2: 2012-03-01 04:00

Duration = 0 hours

15.6 Calculating Duration in Minutes

15.6.1 Definition

In CQL, a minute is defined as 60 seconds. The duration in minutes between two dates is the

number of seconds between the two dates, divided by 60. The result is truncated to the unit.

15.6.2 Examples

1. Example 1:
Date 1: 2012-03-01 03:10:00

Date 2: 2012-03-01 05:20:00

Duration = 130 minutes

2. Example 2:
Date 1: 2012-02-29 23:10:00

Date 2: 2012-03-01 00:20:00

Duration = 70 minutes

15.7 Difference Calculations

Difference calculations are performed by truncating the date/time values at the next precision,

and then performing the corresponding duration calculation on the truncated values.

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 250
© 2014-2017 Health Level Seven International. All rights reserved

15.7.1 Examples

1. Example 1:
Date 1: 2012-03-01 03:10:00

Date 2: 2012-12-31 10:10:00

Difference (years) = Duration (years) between 2012-01-01 00:00:00 and 2012-01-01

00:00:00

Difference (years) = 0

2. Example 2:
Date 1: 2012-12-31 03:10:00

Date 2: 2013-01-01 10:10:00

Difference (years) = Duration (years) between 2012-01-01 00:00:00 and 2013-01-01

00:00:00

Difference (years) = 1

3. Example 3:
Date 1: 2016-10-10 09:00:00

Date 2: 2016-10-11 11:59:00

Difference (days) = Duration (days) between 2016-10-10 00:00:00 and 2016-10-11

00:00:00

Difference (days) = 1

4. Example 4:
Date 1: 2016-10-10 09:00:00

Date 2: 2016-10-12 00:00:00

Difference (days) = Duration (days) between 2016-10-10 00:00:00 and 2016-10-12

00:00:00

Difference (days) = 2

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 251
© 2014-2017 Health Level Seven International. All rights reserved

16 APPENDIX I – FHIRPATH FUNCTION TRANSLATION

This appendix provides detailed mappings for each FHIRPath function in terms of the ELM

output produced.

16.1 .all()

X.all(<condition>) === AllTrue(X $this let a: <condition> where a return a)

16.2 .allFalse()

X.allFalse() === AllTrue(X A return not A)

16.3 .allTrue()

X.allTrue() === AllTrue(X)

16.4 .anyFalse()

X.anyFalse() === AnyTrue(X A return not A)

16.5 .anyTrue()

X.anyTrue() === AnyTrue(X)

16.6 .as()

X.as(<type>) === X as <type>

X.as(<type>) === X a where a is <type> return a as <type>

16.7 .children()

.children(X) === Children(X)

16.8 .combine()

X.combine(Y) === Flatten({ X, Y })

16.9 .contains()

X.contains(Y) === PositionOf(Y, X) >= 0

16.10 .count()

X.count() === Count(X)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 252
© 2014-2017 Health Level Seven International. All rights reserved

16.11 .descendents()

.descendents(X) === Descendents(X)

16.12 .distinct()

X.distinct() === distinct X

16.13 .empty()

X.empty() === not exists X

16.14 .endsWith()

X.endsWith(Y) === EndsWith(X, Y)

16.15 .exists()

X.exists() === exists X

X.exists(<condition>) === exists (X $this where <condition>)

16.16 .first()

X.first() === First(X)

16.17 .iif()

X.iif(Y) === if X then Y else null

X.iif(Y, Z) === if X then Y else Z

16.18 .indexOf()

X.indexOf(Y) === PositionOf(Y, X) // Note carefully the order of arguments here, it’s the

opposite of IndexOf

16.19 .is()

X.is(<type>) === X is <type>

16.20 .isDistinct()

X.isDistinct() === Count(X) = Count(distinct X)

16.21 .last()

X.last() === Last(X)

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 253
© 2014-2017 Health Level Seven International. All rights reserved

16.22 .lastIndexOf()

X.lastIndexOf(Y) === LastPositionOf(Y, X) // Note carefully the order of arguments here, it’s

the opposite of lastIndexOf.

16.23 .length()

X.length() === Length(X)

16.24 .matches()

X.matches(Y) === Matches(X, Y)

16.25 .ofType()

X.ofType(T) === X $this where $this is T

Note that the argument T is required to be a literal string, and is interpreted as the name of a type.

For non-named-types, type specifier syntax applies.

16.26 .not()

X.not() === not X

16.27 .now()

now() === Now()

16.28 .repeat()

X.repeat(<element>) === Repeat(X, <element>)

The type of X.repeat(<element>) is inferred as the type of:

X.select(<element>).select(<element>)

16.29 .replace()

X.replace(Y, Z) === Replace(X, Y, Z)

16.30 .replaceMatches()

X.replaceMatches(Y, Z) === ReplaceMatches(X, Y, Z)

16.31 .select()

If the result type of <element> is not list-valued:

X.select(<element>) === X $this let a: <element> where a is not null return a

If the result type of <element> is list-valued:

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 254
© 2014-2017 Health Level Seven International. All rights reserved

X.select(<element>) === Flatten(X $this let a: <element> where a is not null return a)

16.32 .single()

X.single() === singleton from X

16.33 .skip()

X.skip(Y) === Slice(X, Y, null)

16.34 .startsWith()

X.startsWith(Y) === StartsWith(X, Y)

16.35 .subsetOf()

X.subsetOf(Y) === X included in Y

16.36 .substring()

X.substring(Y) === SubString(X, Y)

X.substring(Y, Z) === SubString(X, Y, Z)

16.37 .supersetOf()

X.supersetOf(Y) === X includes Y

16.38 .tail()

X.tail() === Slice(X, 1, null)

16.39 .take()

X.take(Y) === Slice(X, 0, Y)

16.40 .toBoolean()

X.toBoolean() === ToBoolean(X)

16.41 .toDateTime()

X.toDateTime() === ToDateTime(X)

16.42 .today()

today() === Today()

HL7 Standard: Clinical Quality Language Specification, Release 1 Page 255
© 2014-2017 Health Level Seven International. All rights reserved

16.43 .toDecimal()

X.toDecimal() === ToDecimal(X)

16.44 .toInteger()

X.toInteger() === ToInteger(X)

16.45 .toString()

X.toString() === ToString(X)

16.46 .toTime()

X.toTime() === ToTime(X)

16.47 .trace()

X.output(Y) === Trace(X, Y) // Add to ELM

16.48 .where()

X.where(<condition>) === X $this where <condition>

	1 Introduction
	1.1 Background
	1.2 Clinical Quality Framework Initiative
	1.3 Approach
	1.3.1 Author Perspective
	1.3.2 Logical Perspective
	1.3.3 Physical Perspective

	1.4 Audience
	1.5 Scope of the Specification
	1.6 Alignment to CQF Artifact Sharing Use Case
	1.6.1 Use Case Assumptions and Conditions

	1.7 Relationship to Other HL7 Specifications
	1.7.1 Health Quality Measure Format (HQMF)
	1.7.2 Clinical Decision Support Knowledge Artifact Specification (KAS)
	1.7.3 Fast Healthcare Interoperability Resources (FHIR)
	1.7.4 FHIRPath

	1.8 Organization of this Specification

	2 Author’s Guide
	2.1 Declarations
	2.1.1 Library
	2.1.2 Data Models
	2.1.3 Libraries
	2.1.4 Terminology
	2.1.5 Parameters
	2.1.6 Context
	2.1.7 Statements

	2.2 Retrieve
	2.2.1 Clinical Statement Structure
	2.2.2 Filtering with Terminology
	2.2.3 Retrieve Context

	2.3 Queries
	2.3.1 Filtering
	2.3.2 Shaping
	2.3.3 Sorting
	2.3.4 Relationships
	2.3.5 Full Query

	2.4 Values
	2.4.1 Simple Values
	2.4.1.1 Boolean
	2.4.1.2 Integer
	2.4.1.3 Decimal
	2.4.1.4 String
	2.4.1.5 DateTime and Time

	2.4.2 Clinical Values
	2.4.2.1 Quantities
	2.4.2.2 Code
	2.4.2.3 Concept
	2.4.2.4 Valuesets
	2.4.2.5 Codesystems

	2.4.3 Structured Values (Tuples)
	2.4.3.1 Missing Information

	2.4.4 List Values
	2.4.5 Interval Values

	2.5 Operations
	2.5.1 Comparison Operators
	2.5.2 Logical Operators
	2.5.3 Arithmetic Operators
	2.5.4 Date/Time Operators
	2.5.4.1 Constructing Date/Time Values
	2.5.4.2 Comparing Dates and Times
	2.5.4.3 Extracting Date and Time Components
	2.5.4.4 Date/Time Arithmetic
	2.5.4.5 Computing Durations and Differences

	2.5.5 Timing and Interval Operators
	2.5.5.1 Operating on Intervals
	2.5.5.2 Comparing Intervals
	2.5.5.3 Timing Relationships
	2.5.5.4 Computing Intervals
	2.5.5.5 Date/Time Intervals

	2.5.6 List Operators
	2.5.6.1 Operating on Lists
	2.5.6.2 Comparing Lists
	2.5.6.3 Computing Lists
	2.5.6.4 Lists of Intervals

	2.5.7 Aggregate Operators
	2.5.8 Clinical Operators
	2.5.8.1 Quantity Operators
	2.5.8.2 Terminology Operators
	2.5.8.3 Patient Operators

	2.6 Authoring Artifact Logic
	2.6.1 Running Example
	2.6.2 Clinical Quality Measure Logic
	2.6.3 Using Define Statements
	2.6.4 Clinical Decision Support Logic
	2.6.5 Using Libraries to Share Logic

	3 Developer’s Guide
	3.1 Lexical Elements
	3.1.1 Whitespace
	3.1.2 Comments
	3.1.3 Literals
	3.1.4 Symbols
	3.1.5 Keywords
	3.1.6 Identifiers
	3.1.7 Operator Precedence
	3.1.8 Case-Sensitivity

	3.2 Libraries
	3.2.1 Access Modifiers
	3.2.2 Identifier Resolution
	3.2.3 Function Resolution

	3.3 Data Models
	3.3.1 Alternate Data Models
	3.3.2 Multiple Data Models

	3.4 Types
	3.4.1 System-Defined Types
	3.4.2 Specifying Types
	3.4.3 Type Testing
	3.4.4 Choice Types
	3.4.5 Type Inference
	3.4.5.1 Literals and Selectors
	3.4.5.2 Operators and Functions
	3.4.5.3 Queries

	3.4.6 Conversion
	3.4.6.1 Explicit Conversion
	3.4.6.2 Implicit Conversions

	3.4.7 Casting
	3.4.7.1 Implicit Casting

	3.4.8 Promotion and Demotion
	3.4.9 Conversion Precedence

	3.5 Conditional Expressions
	3.6 Nullological Operators
	3.7 String Operators
	3.8 Introducing Context in Queries
	3.9 Multi-Source Queries
	3.10 Non-Retrieve Queries
	3.11 Defining Functions
	3.12 Using FHIRPath
	3.12.1 Path Traversal
	3.12.2 List Promotion and Demotion
	3.12.3 Missing Information
	3.12.4 Type Resolution
	3.12.5 Method Invocation

	4 Logical Specification
	4.1 Expressions
	4.2 Simple Values
	4.3 Comparison Operators
	4.4 Logical Operators
	4.5 Nullological Operators
	4.6 Conditional Operators
	4.7 Arithmetic Operators
	4.8 String Operators
	4.9 Date and Time Operators
	4.10 Interval Operators
	4.11 Structured Values
	4.12 List Values
	4.13 Aggregate Operators
	4.14 Type Specifiers and Operators
	4.15 Queries
	4.16 Reusing Logic
	4.17 External Data
	4.18 Clinical Operators
	4.19 Parameters
	4.20 Data Model
	4.21 Libraries
	4.22 Errors and Messages

	5 Language Semantics
	5.1 Clinical Data Retrieval in Quality Artifacts
	5.1.1 Defining Clinical Data
	5.1.2 Conformance Levels
	5.1.2.1 Strict Conformance
	5.1.2.2 Loose Conformance

	5.1.3 Artifact Data Requirements

	5.2 Expression Language Semantics
	5.2.1 Data Model
	5.2.1.1 Values
	5.2.1.2 Simple Types
	5.2.1.3 Structured Types
	5.2.1.4 Collection Types
	5.2.1.5 Interval Types

	5.2.2 Language Elements
	5.2.3 Semantic Validation
	5.2.4 Execution Model

	5.3 Query Evaluation
	5.3.1 Evaluate Sources
	5.3.2 Iteration
	5.3.2.1 Let Clause
	5.3.2.2 With Clause
	5.3.2.3 Without Clause
	5.3.2.4 Where Clause
	5.3.2.5 Return Clause

	5.3.3 Sort
	5.3.4 Implementing Query Evaluation

	5.4 Timing Calculations
	5.4.1 Definitions
	5.4.2 Date/Time Arithmetic

	5.5 Precision-Based Timing
	5.5.1 Uncertainty
	5.5.1.1 Comparison Operators
	5.5.1.2 Arithmetic Operators
	5.5.1.3 Implicit Conversion

	5.5.2 Determining Difference and Duration
	5.5.3 Timing Phrases
	5.5.3.1 Same As
	5.5.3.2 Before/After
	5.5.3.3 Within
	5.5.3.4 Interval Operators

	5.5.4 Implementing Precision-Based Timing with Uncertainty

	6 Translation Semantics
	6.1 CQL-to-ELM
	6.1.1 Declarations
	6.1.2 Types
	6.1.3 Literals and Selectors
	6.1.4 Functions
	6.1.4.1 Logical Operators
	6.1.4.2 Type Operators
	6.1.4.3 Nullological Operators
	6.1.4.4 Comparison Operators
	6.1.4.5 Arithmetic Operators
	6.1.4.6 String Operators
	6.1.4.7 Date/Time Operators
	6.1.4.8 Interval Operators
	6.1.4.9 List Operators
	6.1.4.10 Aggregate Operators
	6.1.4.11 Clinical Operators

	6.1.5 Phrases
	6.1.6 Queries

	6.2 ELM-to-CQL
	6.2.1 ForEach
	6.2.2 Times
	6.2.3 Filter
	6.2.4 Sort

	7 Physical Representation
	7.1 Schemata
	7.1.1 Media Types and Namespaces

	7.2 Library References
	7.3 Data Model References

	8 Appendix A – CQL Syntax Formal Specification
	8.1 Declarations
	8.2 Type Specifiers
	8.3 Statements
	8.4 Queries
	8.5 Expressions
	8.6 Terms
	8.7 Lexer Rules

	9 Appendix B – CQL Reference
	9.1 Types
	9.1.1 Any
	9.1.2 Boolean
	9.1.3 Code
	9.1.4 Concept
	9.1.5 DateTime
	9.1.6 Decimal
	9.1.7 Integer
	9.1.8 Quantity
	9.1.9 String
	9.1.10 Time

	9.2 Logical Operators
	9.2.1 And
	9.2.2 Implies
	9.2.3 Not
	9.2.4 Or
	9.2.5 Xor

	9.3 Type Operators
	9.3.1 As
	9.3.2 Children
	9.3.3 Convert
	9.3.4 Descendents
	9.3.5 Is
	9.3.6 ToBoolean
	9.3.7 ToConcept
	9.3.8 ToDateTime
	9.3.9 ToDecimal
	9.3.10 ToInteger
	9.3.11 ToQuantity
	9.3.12 ToString
	9.3.13 ToTime

	9.4 Nullological Operators
	9.4.1 Coalesce
	9.4.2 IsNull
	9.4.3 IsFalse
	9.4.4 IsTrue

	9.5 Comparison Operators
	9.5.1 Between
	9.5.2 Equal
	9.5.3 Equivalent
	9.5.4 Greater
	9.5.5 Greater Or Equal
	9.5.6 Less
	9.5.7 Less Or Equal
	9.5.8 Not Equal
	9.5.9 Not Equivalent

	9.6 Arithmetic Operators
	9.6.1 Abs
	9.6.2 Add
	9.6.3 Ceiling
	9.6.4 Divide
	9.6.5 Floor
	9.6.6 Exp
	9.6.7 Log
	9.6.8 Ln
	9.6.9 Maximum
	9.6.10 Minimum
	9.6.11 Modulo
	9.6.12 Multiply
	9.6.13 Negate
	9.6.14 Predecessor
	9.6.15 Power
	9.6.16 Round
	9.6.17 Subtract
	9.6.18 Successor
	9.6.19 Truncate
	9.6.20 Truncated Divide

	9.7 String Operators
	9.7.1 Combine
	9.7.2 Concatenate
	9.7.3 EndsWith
	9.7.4 Indexer
	9.7.5 LastPositionOf
	9.7.6 Length
	9.7.7 Lower
	9.7.8 Matches
	9.7.9 PositionOf
	9.7.10 ReplaceMatches
	9.7.11 Split
	9.7.12 StartsWith
	9.7.13 Substring
	9.7.14 Upper

	9.8 Date/Time Operators
	9.8.1 Add
	9.8.2 After
	9.8.3 Before
	9.8.4 DateTime
	9.8.5 Date/Time Component From
	9.8.6 Difference
	9.8.7 Duration
	9.8.8 Now
	9.8.9 Same As
	9.8.10 Same Or After
	9.8.11 Same Or Before
	9.8.12 Subtract
	9.8.13 Time
	9.8.14 TimeOfDay
	9.8.15 Today

	9.9 Interval Operators
	9.9.1 After
	9.9.2 Before
	9.9.3 Collapse
	9.9.4 Contains
	9.9.5 End
	9.9.6 Ends
	9.9.7 Equal
	9.9.8 Equivalent
	9.9.9 Except
	9.9.10 In
	9.9.11 Includes
	9.9.12 Included In
	9.9.13 Intersect
	9.9.14 Meets
	9.9.15 Not Equal
	9.9.16 Not Equivalent
	9.9.17 On Or After
	9.9.18 On Or Before
	9.9.19 Overlaps
	9.9.20 Point From
	9.9.21 Properly Includes
	9.9.22 Properly Included In
	9.9.23 Start
	9.9.24 Starts
	9.9.25 Union
	9.9.26 Width

	9.10 List Operators
	9.10.1 Contains
	9.10.2 Distinct
	9.10.3 Equal
	9.10.4 Equivalent
	9.10.5 Except
	9.10.6 Exists
	9.10.7 Flatten
	9.10.8 First
	9.10.9 In
	9.10.10 Includes
	9.10.11 Included In
	9.10.12 Indexer
	9.10.13 IndexOf
	9.10.14 Intersect
	9.10.15 Last
	9.10.16 Length
	9.10.17 Not Equal
	9.10.18 Not Equivalent
	9.10.19 Properly Includes
	9.10.20 Properly Included In
	9.10.21 Singleton From
	9.10.22 Skip
	9.10.23 Tail
	9.10.24 Take
	9.10.25 Union

	9.11 Aggregate Functions
	9.11.1 AllTrue
	9.11.2 AnyTrue
	9.11.3 Avg
	9.11.4 Count
	9.11.5 Max
	9.11.6 Min
	9.11.7 Median
	9.11.8 Mode
	9.11.9 Population StdDev
	9.11.10 Population Variance
	9.11.11 StdDev
	9.11.12 Sum
	9.11.13 Variance

	9.12 Clinical Operators
	9.12.1 Age
	9.12.2 AgeAt
	9.12.3 CalculateAge
	9.12.4 CalculateAgeAt
	9.12.5 Equal
	9.12.6 Equivalent
	9.12.7 In (Codesystem)
	9.12.8 In (Valueset)

	9.13 Errors and Messaging
	9.13.1 Message

	10 Appendix C – Reference Implementations
	10.1 CQL-ELM Translator Reference Implementation
	10.2 CQL Execution Framework Reference Implementation
	10.3 Other CQL-related Tools

	11 Appendix D – References
	12 Appendix E – Acronyms
	13 Appendix F – Glossary
	14 Appendix G – Formatting Conventions
	14.1 Case-Related Conventions
	14.1.1 CQL-Defined Casing

	14.2 Spacing Conventions
	14.3 Operators and Functions
	14.3.1 Operators
	14.3.2 Functions

	14.4 Literals
	14.4.1 Quantities
	14.4.2 Intervals
	14.4.3 Lists and Tuples

	14.5 Queries
	14.6 Syntax Highlighting

	15 Appendix H – Time Interval Calculation Examples
	15.1 Calculating Duration in Years
	15.1.1 Definition
	15.1.2 Examples

	15.2 Calculating Duration in Months
	15.2.1 Definition
	15.2.2 Examples

	15.3 Calculating Duration in Weeks
	15.3.1 Definition
	15.3.2 Examples

	15.4 Calculating Duration in Days
	15.4.1 Definition
	15.4.2 Examples

	15.5 Calculating Duration in Hours
	15.5.1 Definition
	15.5.2 Examples

	15.6 Calculating Duration in Minutes
	15.6.1 Definition
	15.6.2 Examples

	15.7 Difference Calculations
	15.7.1 Examples

	16 Appendix I – FHIRPath Function Translation
	16.1 .all()
	16.2 .allFalse()
	16.3 .allTrue()
	16.4 .anyFalse()
	16.5 .anyTrue()
	16.6 .as()
	16.7 .children()
	16.8 .combine()
	16.9 .contains()
	16.10 .count()
	16.11 .descendents()
	16.12 .distinct()
	16.13 .empty()
	16.14 .endsWith()
	16.15 .exists()
	16.16 .first()
	16.17 .iif()
	16.18 .indexOf()
	16.19 .is()
	16.20 .isDistinct()
	16.21 .last()
	16.22 .lastIndexOf()
	16.23 .length()
	16.24 .matches()
	16.25 .ofType()
	16.26 .not()
	16.27 .now()
	16.28 .repeat()
	16.29 .replace()
	16.30 .replaceMatches()
	16.31 .select()
	16.32 .single()
	16.33 .skip()
	16.34 .startsWith()
	16.35 .subsetOf()
	16.36 .substring()
	16.37 .supersetOf()
	16.38 .tail()
	16.39 .take()
	16.40 .toBoolean()
	16.41 .toDateTime()
	16.42 .today()
	16.43 .toDecimal()
	16.44 .toInteger()
	16.45 .toString()
	16.46 .toTime()
	16.47 .trace()
	16.48 .where()

