

1

ADE Prevention and Monitoring: Warfarin Time in Therapeutic Range
Supplemental SQL Logic Reference

(CMS179, version 2, updated 5/15/13)

ADE Prevention and Monitoring
Percent of Time in Therapeutic Range (TTR)

The purpose of this document is to support the implementation of the clinical quality measure “ADE

Prevention and Monitoring: Warfarin Time in Therapeutic Range” by providing an example of the

structured query language (SQL) that underwent field testing. The defined SQL logic below provides a full

view of its content, but the specifications supplied in the header section of the Health Quality Measure

Format (HQMF) of the clinical quality measure should be the primary basis for implementation of the

measure. The HQMF files for this clinical quality measure contain instructions in the Definition and

Guidance section which indicate the ultimate purpose of the SQL logic defined in this document. Since the

SQL implementation may vary depending on an EHR system’s table structure and data definitions, EHR

system programmers and vendors should replace the field names and table names as needed based on

their knowledge of their EHR system and its requirements in order to fulfill the measure’s intent.

TTR percentage will be calculated for each patient that meets the criteria for the Measure Population. The

average of these values is reported as the Measure Observation.

The initial part of the SQL logic calculates the percent TTR for each patient (PctTTR in the temporary table

#PatientTTR). Percent of time in therapeutic range (TTR) is calculated within the logic originally developed

by the Veterans Affairs (VA).

Warfarin time in therapeutic range is the percentage of time in which patients with atrial fibrillation or

flutter who are on chronic warfarin therapy have INR test results within the therapeutic range (2.0 - 3.0)

during the measurement period.

The following filters are applied to the INR results prior to the calculation of TTR for each patient:

1) INR value closest to 2.5 when there are more than one INR result on a single date
2) INR values greater than 10 will be replaced with an INR value of 10
3) INR values less than 0.8 are ignored and eliminated from the final TTR calculation for each

patient

The logic keeps track of the number of valid INR intervals for each patient. A Valid INR Interval is defined

as a pair of INR start dates that are less than or equal to 56 days apart. Patients without 2 such intervals

will be excluded from the calculation of the providers’ Average PctTTR later on.

Identifiers for the patient’s provider and the practice site are also included. The identifier for the provider

that is ultimately responsible for warfarin management should be used. The identifier for the practice site

at which the patient’s warfarin is managed should be used.

clam
Highlight

2

USE [Datamart_Staging]

GO

/****** Object: StoredProcedure [dbo].[ADE_TTRCalculationWithFilters]

Script Date: 04/10/2013 09:01:41 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

ALTER PROCEDURE [dbo].[ADE_TTRCalculationWithFilters]

AS

SET NOCOUNT ON;

SELECT

 Patient_ID,

 Practice_Site,

 provider_ID,

 [QDM_Attribute Result Value],

 ABS(2.5 - [QDM_Attribute Result Value])AS ValDiff,

 DATEADD(DAY,0, DATEDIFF(DAY, 0,[Start DateTime])) AS [Start

DateTime]

INTO

 #LabResults1

FROM dbo.ADE_LabResults a JOIN

 ADE_VocabularyDictionary b ON a.DataElement_Code = b.Code

WHERE

 b.[QDM Category] = 'Laboratory Test, Result' AND b.[Value Set

Name] = 'INR'

ORDER BY patient_ID, [Start DateTime]

SELECT Patient_ID,

 [Start DateTime],

 MIN(ValDiff) AS ValDiff

INTO #LabResults2

FROM #LabResults1

GROUP BY Patient_ID,

 [Start DateTime]

SELECT a.Patient_ID,

 Practice_Site,

 Provider_ID,

 a.[Start DateTime],

CASE WHEN a.[QDM_Attribute Result Value] >10 THEN 10 ELSE

a.[QDM_Attribute Result Value] END AS [QDM_Attribute Result Value]

INTO #FilteredLabResults

FROM #LabResults1 a

JOIN #LabResults2 b ON a.Patient_ID = b.Patient_ID

AND a.[Start DateTime] = b.[Start DateTime]

AND a.ValDiff = b.ValDiff

WHERE a.[QDM_Attribute Result Value] >= 0.8

3

DROP TABLE #LabResults2

DROP TABLE #LabResults1

SELECT

 Patient_ID,

 Practice_Site,

 Provider_ID,

 [QDM_Attribute Result Value],

 [Start datetime],

 RANK () OVER (PARTITION BY Patient_ID ORDER BY [Start

datetime]) AS INROrder

INTO

 #OrderedINRList

FROM #FilteredLabResults

ORDER BY

 [Start datetime]

DECLARE @INRLowerBound AS DECIMAL(20,4)

SET @INRLowerBound = 2.0

DECLARE @INRUpperBound AS DECIMAL(20,4)

SET @INRUpperBound = 3.0

SELECT

Patient_ID,

Practice_Site,

Provider_ID,

INROrder,

INR1Date,

INR1Result,

TimeBetweenSamples,

INRDiff,

INRShiftKPI2,

IsValidInterval,

CASE

 WHEN

 INRShiftKPI2 = 0.0 AND (INR1Result >= @INRLowerBound AND

INR1Result <= @INRUpperBound

 AND INR2Result >= @INRLowerBound AND INR2Result <=

@INRUpperBound)THEN CAST(TimeBetweenSamples AS DECIMAL)

 ELSE isnull(cast(TimeBetweenSamples AS DECIMAL) * ABS((INRShiftKPI2

/ NULLIF(INRDiff,0))),0)

 END AS TherapeuticDaysKPI2

INTO

 #TherapeuticDays

FROM

(

 SELECT

 inr1.Patient_ID,

 inr1.Practice_Site,

 inr1.Provider_ID,

4

 inr1.INROrder,

 inr1.[Start datetime] AS INR1Date,

 inr1.[QDM_Attribute Result Value] AS INR1Result,

 inr2.[Start datetime] AS INR2Date,

 inr2.[QDM_Attribute Result Value] AS INR2Result,

 DATEDIFF(DAY,inr1.[Start datetime],inr2.[Start datetime]) AS

TimeBetweenSamples,

 inr2.[QDM_Attribute Result Value] - inr1.[QDM_Attribute

Result Value] AS INRDiff,

 dbo.DifferenceWithinRange_v2 (inr1.[QDM_Attribute Result

Value],inr2.[QDM_Attribute Result Value],@INRLowerBound,@INRUpperBound)

AS INRShiftKPI2,

 CASE

 WHEN (ABS(DATEDIFF(DAY,inr1.[Start datetime],inr2.[Start

datetime])) <= 56)

 THEN 1

 ELSE 0

 END AS IsValidInterval

 FROM

 #OrderedINRList inr1

 INNER JOIN #OrderedINRList inr2

 ON inr2.INROrder = inr1.INROrder + 1 AND inr1.Patient_ID =

inr2.Patient_ID

 WHERE

 inr2.[Start datetime] >= inr1.[Start datetime]

) x

ORDER BY

 INR1Date

SELECT

 Patient_ID ,

 Practice_Site,

 Provider_ID,

 ROUND(100 * (SUM(TherapeuticDaysKPI2) / SUM(TimeBetweenSamples)),2)

AS PctTTR,

 SUM(IsValidInterval) as NumValidIntervals

INTO

 #PatientTTR

FROM

 #TherapeuticDays

GROUP BY Patient_ID,Practice_Site, Provider_ID

ORDER BY Patient_ID

DROP TABLE #FilteredLabResults

DROP TABLE #TherapeuticDays

DROP TABLE #OrderedINRList

5

Cumulative Medication Duration

DECLARE @MeasurementStartDate DATETIME

DECLARE @LookBackDate DATETIME

SET @MeasurementStartDate = '1/1/2011'

SET @LookBackDate = @MeasurementStartDate - 200

SELECT DISTINCT a.Patient_ID,

 a.Practice_Site,

 a.Provider_ID,

 a.PctTTR,

 B.[Start DateTime],

 B.[Stop DateTime],

 DATEDIFF(DAY,B.[Start DateTime] , B.[Stop

DateTime]) AS DateDifference,

 CASE WHEN b.[Start DateTime] < @LookBackDate THEN

DATEDIFF(DAY,B.[Start DateTime] ,

 B.[Stop DateTime]) -

DATEDIFF(DAY,B.[Start DateTime] , @LookBackDate)

 WHEN b.[Stop DateTime] >=

@MeasurementStartDate THEN DATEDIFF(DAY,B.[Start DateTime] ,

 B.[Stop DateTime]) -

DATEDIFF(DAY,@MeasurementStartDate,B.[Stop DateTime])

 ELSE DATEDIFF(DAY,B.[Start DateTime] , B.[Stop

DateTime]) END AS ActualUsageIn200DayPeriod

INTO #PatientTTRWithMedDates

FROM #PatientTTR A

 JOIN ADE_Medications B ON A.Patient_ID = B.Patient_ID

 JOIN ADE_VocabularyDictionary C ON B.DataElement_Code =

C.Code

WHERE B.[Start DateTime] IS NOT NULL

 AND (b.[Start DateTime] >= @LookBackDate or

b.[Stop DateTime] >= @LookBackDate)

 AND (b.[Start DateTime] <= @MeasurementStartDate)

 AND C.[QDM Category] = 'Medication, Active'

SELECT Patient_ID,

Cumulative medication duration (CMD) includes the total number of calendar days the patient is actively

using Warfarin. The SQL logic below does not include the specific medication codes that are used to

identify each individual warfarin prescription for a patient. In the HQMF file for the clinical quality

measure, the value set for the data element Medication, Active “Warfarin” contains the RxNorm codes

that should be used to identify patients on warfarin therapy. The HQMF file for the clinical quality

measure also defines cumulative medication duration >=180 days.

For testing purposes, the measurement start date was set to 1/1/2011, and the look-back period for an

active medication of warfarin is 200 days prior to measurement start date. Depending on how cumulative

medication duration is captured in the site’s EHR, SQL logic may need to be modified in order to include

this particular data set.

6

 Practice_Site,

 Provider_ID,

 PctTTR,

 SUM(ActualUsageIn200DayPeriod) AS

CumlativeMedicationUsage

INTO #PatientTTRWithMin180DaysMeds

FROM #PatientTTRWithMedDates

GROUP BY Patient_ID,Practice_Site, Provider_ID,PctTTR

HAVING SUM(ActualUsageIn200DayPeriod) >=180

ORDER BY Patient_ID,Practice_Site, Provider_ID

Age Requirements

SELECT a.Patient_id,

 b.BirthDate,

 a.Practice_Site,

 a.Provider_ID,

 a.PctTTR

INTO #PatientTTRAbove18WithMin180DaysMeds

FROM #PatientTTRWithMin180DaysMeds a

JOIN ADE_Patients B ON a.Patient_ID = b.Patient_ID

WHERE DATEDIFF(YEAR,b.birthdate,@MeasurementStartDate) >=18

ORDER BY A.Practice_Site

Active Diagnosis (including exclusion criteria)

SELECT a.Patient_Id,

 a.BirthDate,

 a.Practice_Site,

 a.Provider_ID,

 a.PctTTR

INTO #PatientTTRAbove18WithMin180DaysMedsAndDiagnosis

The logic in this section contains a filter that states the patient must be 18 years or older during the

measurement period.

Atrial Fibrillation Diagnosis

Patients who have an active diagnosis of atrial fibrillation or atrial flutter that started and did not end

before the first day of the measurement period must be included in this measure.

Valvular Heart Disease

If patients contain an active diagnosis of valvular heart disease that started and did not end before the

start of the measurement period, they should be excluded from the data set.

7

FROM #PatientTTRAbove18WithMin180DaysMeds a JOIN

 ADE_Diagnosis b ON a.Patient_id =B.Patient_ID

WHERE

 b.[start DateTime] < @MeasurementStartDate

 AND b.[Stop DateTime] > @MeasurementStartDate

 AND b.DataElement_Code IN (SELECT CODE FROM

ADE_VocabularyDictionary WHERE [QDM Category] = 'Diagnosis, Active' AND

([Value Set Name] = 'Atrial Fibrillation/Flutter'))

 AND b.Patient_id NOT IN (SELECT Patient_Id FROM

ADE_Diagnosis where (DataElement_Code IN (SELECT CODE FROM

ADE_VocabularyDictionary WHERE [QDM Category] = 'Diagnosis, Active' AND

([Value Set Name] = 'Valvular Heart Disease'))))

 AND (b.[start DateTime] <= @MeasurementStartDate AND b.[Stop

DateTime] >= @MeasurementStartDate)

ORDER BY A.Patient_ID

DROP TABLE #PatientTTRAbove18WithMin180DaysMeds

Valid INR Intervals

SELECT A.Patient_Id,

 A.BirthDate,

 A.Practice_Site,

 A.Provider_ID,

 A.PctTTR

INTO #PatientsWithTwoValidIntervals

FROM #PatientTTRAbove18WithMin180DaysMedsAndDiagnosis A

JOIN #PatientTTR B ON A.Patient_ID = B.Patient_ID

WHERE

 B.NumValidIntervals >= 2

Encounter Data

 The SQL logic below calculates patients who have at least two valid INR intervals during the measurement

period. A valid INR interval is defined as a pair of INR results that are less than or equal to 56 days apart. If

multiple INR results are present on the same day, only one is noted for the TTR calculation (filter

mentioned in Percent TTR section).

The logic below includes patients that have at least one outpatient visit during the measurement period.

Patient encounter codes and definitions are site specific and must capture the relative encounters needed

to meet the criteria of the measure.

clam
Highlight

8

SELECT a.Patient_Id,

 a.BirthDate,

 a.Practice_Site,

 a.Provider_ID,

 a.PctTTR

INTO #PatientTTRWithDaysAgeDiagnosisEncounter

FROM #PatientsWithTwoValidIntervals a

JOIN ADE_Encounters B ON A.Patient_Id = b.Patient_ID

JOIN ADE_VocabularyDictionary C ON B.DataElement_Code = C.Code

WHERE

 (C.[Value Set Name] = 'Face-to-Face Interaction' OR

C.[Value Set Name] = 'Office Visit')

 AND b.[start datetime] >= @MeasurementStartDate

ORDER BY Practice_site

Average TTR by Provider and Practice

SELECT Practice_Site,AVG(PctTTR) AS AvgTTRByPracticeSite

FROM #PatientTTRWithDaysAgeDiagnosisEncounter

GROUP BY Practice_Site

SELECT Provider_ID,AVG(PctTTR) AS AvgTTRByProvider

FROM #PatientTTRWithDaysAgeDiagnosisEncounter

GROUP BY Provider_ID

In order to calculate an AverageTTR by provider, patients who meet all the criteria above will be grouped

by unique provider identifier. The provider IDs should be assigned by the site (e.g., actual provider

identifier). The identifier for the provider that is ultimately responsible for warfarin management should

be used.

Note: the logic also includes the calculation of AverageTTR by practice site (e.g., an anticoagulation clinic).

This is for reference purposes only and is not required for the quality measure or its reporting. Ideally, the

identifier for the practice site at which the patient’s warfarin is managed should be used.

9

FUNCTION [dbo].[DifferenceWithinRange_v2]

USE [V01DW]

GO

/****** Object: UserDefinedFunction [dbo].[DifferenceWithinRange_v2]

Script Date: 01/03/2013 13:51:42 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE FUNCTION [dbo].[DifferenceWithinRange_v2]

(--inputs:

 @Val1 as decimal(10,5),

 @Val2 as decimal(10,5),

 @LowerBound as decimal(10,5),

 @UpperBound as decimal(10,5)

)

RETURNS decimal(10,5)

AS

BEGIN

 -- Declare the return variable here

 DECLARE @result as decimal(10,5)

 set @result =

 (

 SELECT

 case

 -- inr values are both outside the range in the same direction

 when @Val1 > @UpperBound and @Val2 > @UpperBound then null

 when @Val1 < @LowerBound and @Val2 < @LowerBound then null

 -- inr values are straddling the range

 when (@Val1 > @UpperBound and @Val2 < @LowerBound)

 OR (@Val2 > @UpperBound and @Val1 < @LowerBound)

 then @UpperBound - @LowerBound

 -- both inr values are within the range

 when @Val1 between @LowerBound and @UpperBound

The following function is required for the calculation of TTR. This function calculates the difference

between two numbers that falls within a specified range. For example, given a range of 2.0 to 3.0, the

difference between 1.5 and 2.5 within this range is 0.5. The function is intended for use in calculating

differences between INR values within the context of the Rosendaal method of calculating TTR (time in

therapeutic range), which requires the proportion of an INR difference from one sample to the next that

falls within the therapeutic range.

10

 and @Val2 between @LowerBound and @UpperBound

 then (@Val2 - @Val1)

 -- one value is in the range and one is outside

 when @Val1 > @Val2

 and @Val1 > @UpperBound

 then (@UpperBound - @Val2)*(-1) --/ (@Val1 - @Val2)

 when @Val2 > @Val1

 and @Val2 > @UpperBound

 then (@UpperBound - @Val1)*(-1) --/ (@Val2 - @Val2)

 when @Val1 > @Val2

 and @Val2 < @LowerBound

 then (@Val1 - @LowerBound)*(-1)

 when @Val2 > @Val1

 and @Val1 < @LowerBound

 then (@Val2 - @LowerBound)*(-1)

 else null

 end

)

 -- Return the result of the function

 RETURN @result

END

GO

